

Getting Started

EL4J 3.1

Imput. Report Version Date Author(s) Status Visa
6220 EL4J 3.1 23.12.10
6220 EL4J 1.7 15.12.09 POS, MZE,

SWI, DZI,
JHN

final

ELCA Informatique SA, Switzerland, 2009.

 Getting Started

V 1.7 / 15.12.09 / POS, MZE, SWI, DZI, JHN 2 / 10
ELCA Informatique SA, Switzerland, 2009.

Table of Contents

Getting started with EL4J ..3

Setup EL4J..3

First steps with EL4J ...3

EL4J introduction...3
Maven2 introduction ..3

Structure of a Maven project ..3
Maven commands..4
Dependencies & repositories ...4

EL4J project structure..5

Reading 6

For Developers: Initial development ..6
Getting support ..6
The EL4J framework..6
EL4J Demos..7
Developing with Eclipse...8
Debugging ...8

Record of changes ...10

References..10

Abbreviations ...10

 Getting Started

V 1.7 / 15.12.09 / POS, MZE, SWI, DZI, JHN 3 / 10
ELCA Informatique SA, Switzerland, 2009.

Getting started with EL4J
For the project manager or lead developer/ architect: ProjectLifecycle guides you
on how to start and maintain a project based on EL4J.

Setup EL4J
Each developer has to follow the steps in SetupEL4J carefully.

First steps with EL4J
CAVEAT: EL4J contains a lot of different technologies. Please contact POS
in case you feel overwhelmed while you learn EL4J!

• IntroductoryReadingListForEl4J: What documents we recommend that you
read to get into EL4J.

• General information about EL4J can be found at WebHome and
AboutEL4J.

• CourseAboutEl4j

EL4J introduction
This section gives you a short overview over the build system Maven 2 and the
project structure of a typical EL4J application. At the end, you find links to
additional documents.

Maven2 introduction
This section will give you a brief introduction to the Maven2 build system. It will
explain you the basic terms of Maven and the use of archetypes. Maven2 is a tool
to manage software projects. Maven2 is able to manage a project's build,
reporting and documentation based on a project object model called POM.

Structure of a Maven project
EL4J is built with Maven and consists of several subprojects. Each of these
subprojects (called artifacts in Maven) has the following structure:

• src directory containing the source files

• pom.xml file with the description of the artifact for Maven

 Getting Started

V 1.7 / 15.12.09 / POS, MZE, SWI, DZI, JHN 4 / 10
ELCA Informatique SA, Switzerland, 2009.

• .settings directory as well as a .classpath and .project file if you invoke
mvn eclipse:eclipse

• target directory if you invoke mvn install

Artifacts are hierarchically structured having a root pom.xml file, in our case
D:\Projects\EL4J\external\pom.xml. The are linked with help of a parent tag that
a pom.xml file can have.

Maven commands
There are only two Maven commands you will need at the beginning.
The first one is mvn clean install, which will do the following to the artifact and
any child artifact

• clean deletes existing target directories in the artifact directory

• install compiles all sources in the src directory into a artifactName.jar

file, runs JUnit tests, if there are any, creates the target directory, copies
the jar file in the target directory. Moreover it copies the jar file into the
local repository, in our case D:\m2repository

Note: To make changes on your artifact effective, you always have to invoke mvn
clean install. This will cause Maven to deploy the jar file into the local
repository.
The second command is of the form mvn <plugin>:<goal>. You will need the
Maven Eclipse plugin to generate Eclipse project files for your projects. You do
this using the command mvn eclipse:clean eclipse:eclipse -
DdownloadSources=true. For further instructions on how to import a project into
Eclipse, please read the Eclipse section under Setting up EL4J.

Dependencies & repositories
Now, go to your D:\Projects\EL4J directory in a cygwin console and set up a
trivial application as described in the README.txt file of the EL4J convenience
zip file.

• Change to cd myFirstProject. As you see, you can find the src directory
and the pom.xml file typical for a Maven project.

• Take a look at the pom.xml file:

 Getting Started

V 1.7 / 15.12.09 / POS, MZE, SWI, DZI, JHN 5 / 10
ELCA Informatique SA, Switzerland, 2009.

o You will see that our pom.xml file doesn't have a parent, because it's
the top level pom of an independent project.

o There are dependencies to junit and module-core. The first one is
needed to run the tests of our projects (you'll see them later) and the
second is the Core Module of EL4J. It's there because we want to
build our project upon the EL4J framework.

Maven tries to resolve dependencies from the local repository, i.e. it checks if you
have a jar file with the same groupId, artifactId and version in your local
repository. If this is not the case, Maven will try to download these artifacts from
the remote repositories to your local repository.
As you can easily see, Maven will have to download the artifacts from the remote
repository only for the first time and will look it up in the local repository
afterwards.

EL4J project structure
An EL4J project will have a typical structure:

• src

o main

� java This is where all the source (i.e. java) files go to.

� resources This is where all additional files go to like
configuration files.

� env

� env This is where the env.properties file goes to. If you

invoke mvn clean install it will be copied to the target
directory and will be accessible in the progam with help
of module-env

o test This is where all test files go to. It has the same structure as
main, but is there for testing.

� java

� resources

 Getting Started

V 1.7 / 15.12.09 / POS, MZE, SWI, DZI, JHN 6 / 10
ELCA Informatique SA, Switzerland, 2009.

� env

� env

We recommend you to go on with reading some of the additional material now.
Alongside, try to play around with the myFirstProject a little bit. Try, to import the
project into eclipse. Add then a env.properties file to your project, add a new
dependencies to module-env from EL4J and use the class EnvPropertiesUtils
from module-env to read out some properties you create.

Reading
For reading material, take a look at http://el4j.sourceforge.net/documentation.html

For Developers: Initial development
By now, you should

• Have a local copy of the EL4J repository (don't forget to update now and
then with svn up)

• This copy of EL4J should compile with mvn clean install without errors

• Have set up Eclipse to work with EL4J

• Understand the basic concepts of Maven and be able to include new
dependencies and use them

• A basic understanding of Spring, especially about the Application Context,
about the use of configuration files and IoC? .

If so, you're ready for the next step - go directly into EL4J! You will learn the
structure of the EL4J framework, get to know some of the EL4J Demos and learn
how to debug a project.

Getting support
More info can be found here: GettingSupport

The EL4J framework
First, the EL4J framework has following structure:

• applications

 Getting Started

V 1.7 / 15.12.09 / POS, MZE, SWI, DZI, JHN 7 / 10
ELCA Informatique SA, Switzerland, 2009.

o templates Contains the two examples keyword and refdb out of which
we create our templates

o demos Demos that explain a specific functionality of the framework.

• etc Contains additional content like the checkclipse files, log4j
configuration, etc.

• framework

o modules The framework modules of EL4J external

o tests (Integration) Tests, which test two or more (framework)
modules.

• maven

o archetypes The archetype you used earlier

o helpers Some helpers you don't have to worry about now

o plugins Maven plugins that were developed by the EL4J team

• sandbox The place where we try out new things

• site Configuration and additional documents for the website generation

• skin The "skin" of the website

• src Source folder for the website generation. This will hopefully be removed
in the future.

EL4J Demos
EL4J comes with a few demos that show how to use a specific feature of EL4J
(like the statistics functionality). You will find them all in your demo working set in
Eclipse. They are all executable. Please read the corresponding README.txt files
for further instructions.
You could try to take a closer look at the Benchmark Demo. How is remoting done in
EL4J? What kind of protocols does EL4J support? What is Implicit Context
Passing?
Note for internal developers: for additional material, see the web application
template section in the InternalGettingStarted#WebApplicationTemplate guide.

 Getting Started

V 1.7 / 15.12.09 / POS, MZE, SWI, DZI, JHN 8 / 10
ELCA Informatique SA, Switzerland, 2009.

Developing with Eclipse
Eclipse should only be used to write code and test small parts of the project. Most
other development tasks should be executed with Maven, especially the unit tests
due to the following reasons:

• Eclipse projects do not separate compile and test scope as Maven does.

This can be dangerous, for example if the directory test resources contain
Spring bean xml files in the mandatory directory.

• Maven does always have dependent jar artifacts as jar files in the
classpath. In Eclipse, depending to execution level/directory of the goal mvn
eclipse:eclipse, some dependencies are in classpath as jar and some
directly as directory with its classes. The test classes itself are always in
classpath via directory.

• Eclipse has its own compiler. There are some cases, for example with Java

5 syntax, that tests work only if the classes are compiled with the Eclipse
compiler. If they are compiled with a Sun's compiler, the tests fail. At the
end tests should work with both compilers (so using the stricter compiler
(as with maven) improves compatibility).

Debugging
Maven allows you to debug any executed command in Eclipse. To do so you
have to:

• Call debugmaven in your cygwin console

• Set your breakpoints in Eclipse

• Invoke the Maven command that you want, e.g. mvn clean install

• Go to Run -> Debug... in Eclipse.

• There, create a new Remote Java Application

• Set the Connection Properties Host: localhost and Port: 8000

• Click on "Apply" and "Debug"

More info on this can be found under DebuggingHowTo.

 Getting Started

V 1.7 / 15.12.09 / POS, MZE, SWI, DZI, JHN 9 / 10
ELCA Informatique SA, Switzerland, 2009.

Note for internal developers: You can debug a Maven command at the Leaffy
Server by changing the Host to leaffy as well
Note for internal developers: please see the corresponding section in the
InternalGettingStarted#ReadingList guide for additional readings.

 Getting Started

V 1.7 / 15.12.09 / POS, MZE, SWI, DZI, JHN 10 / 10
ELCA Informatique SA, Switzerland, 2009.

Record of changes

Filename Version Date Description / Author

GettingStarted 1.7 15.12.09 Initial Document for EL4J 1.7

References

Abbreviations

