
Maven 2 – The powerful buildsystem

a presentation for EL4J developers

by Martin Zeltner (MZE)

November 2007

1 © ELCA - Nov 2007 MZE (POS)

Agenda

� Introduction 5’

� Installation 5’

� Concepts 40’

� Where to find … 5’

� Daily usage 30’

� Advanced usage 25’

2 © ELCA - Nov 2007 MZE (POS)

Introduction

� Maven intro
� Maven is a software project management and description tool. Based on the concept

of a project object model (POM), Maven can manage a project's build, reporting and
documentation from a central project description.

� Vision: The POM contains all metadata about a project: source code and
documentation repositories, involved persons, release descriptions, all
dependencies, reports we are interested in, how to build, deploy and test
applications, what the project website contains, …

� In the context of this presentation, when we talk of Maven we mean Maven 2.

� License
� The Apache Software License, Version 2.0

� Homepage
� http://maven.apache.org

� Our recommended Version
� 2.1-SNAPSHOT

� We use a self-built version with the bug fix for:
http://sourceforge.net/project/showfiles.php?group_id=147215

� CAVEAT: when upgrading do a rm –r M2_REPO/org/apache/maven

3 © ELCA - Nov 2007 MZE (POS)

Maven 2 – The powerful build system

1. Installation

2. Concepts

3. Where to find …

4. Daily usage

5. Advanced usage

����

4 © ELCA - Nov 2007 MZE (POS)

Installation

Prerequisites
� JDK 5 or higher

� JDK installed and JAVA_HOME set, javac available
� Cygwin

� http://www.cygwin.com/

Installation steps
� Follow the steps of the README.txt in the convenienceZip from
http://sourceforge.net/project/showfiles.php?group_id=147215
Use the newest convenience.zip if possible!
� Verify that maven and Java is correctly installed by launching

./checkInstallation.sh in cygwin

Demo?

5 © ELCA - Nov 2007 MZE (POS)

Optional steps

� Install subversion
� Download and install the Subversion tool, as described under

http://intranet/Business_Process/Utilities/Subversion/Subversion.php EL4J

� Checkout the sources of EL4J
� Choose a location where to checkout the new EL4J (internal and external

stuff) configured for Maven 2 (i.e. D:/Projects/EL4J) and create this
directory path. We name this path EL4J_ROOT.

� Open a command line in EL4J_ROOTand execute

svn checkout https://svn.sourceforge.net/
svnroot/el4j/trunk/el4j external

6 © ELCA - Nov 2007 MZE (POS)

Maven 2 – The powerful build system

1. Installation

2. Concepts

3. Where to find …

4. Daily usage

5. Advanced usage

����

7 © ELCA - Nov 2007 MZE (POS)

Concepts - Inheritance

� Every “pom.xml” file contains Maven
configuration. (In Maven 1 this file had the
name “project.xml”.)

� Here, the project “EL4J” contains the “root
pom” (meaning that it has no parent pom).
It has one sub-module, the “framework”.

� The “framework” itself is also a project,
depends on “EL4J” and has the three
modules “plugins”, “modules” and
“demos”. And so on …

8 © ELCA - Nov 2007 MZE (POS)

Concepts – Merging of pom files (is implicit)

pom.xml

pom.xml

pom.xml

effective
pom

pom merger

9 © ELCA - Nov 2007 MZE (POS)

Concepts – Properties

A property is an important concept in Maven. A property is a name-
value pair (e.g. el4j-home = c:/Projects/EL4J/checkout)

Properties can be set in various ways (lowest to highest precedence)
� File ~/.m2/settings.xml (you can also set a specific file on mvn cmd line

(with –s))
� In the properties section of pom.xml files (can be inherited from parent)
� In profiles (in the global settings or in pom.xml files)
� On the command line with the prefix –D (e.g. –Dname=value). These

properties will actually be standard Java System Properties. When looking
up a maven property, java system properties are always checked first.

How to access properties
� In the normal strings of the pom.xml files you can always refer to a property via

${name} where name is the name of the property
� When certain files are copied, a filter applies, i.e. occurences of properties in

the form ${name} are replaced

10 © ELCA - Nov 2007 MZE (POS)

Concepts – Properties

How to see all active properties defined?
� Please refer to the help:effective-settings goal (see later)

What files are filtered when copying (in EL4J)
� All files under src/main/env and src/test/env

� Please refer also to the env module (it defines support for different
environments)
� http://el4j.sourceforge.net/plugins/maven-env-support-plugin/index.html

11 © ELCA - Nov 2007 MZE (POS)

Concepts – Maven model (POM)

POM structure overview (details in next slides)
� The “pom.xml” file is a schema validated xml file.

12 © ELCA - Nov 2007 MZE (POS)

Concepts – Maven model (POM)

<?xml version="1.0" ... ?>
<project xmlns="http://ma..."

xmlns:xsi="http://www.w3..."
xsi:schemaLocation="...xsd">

<modelVersion/>
<parent>

<groupId/>
<artifactId/>
<version/>
<relativePath/>

</parent>

...

</project>

� modelVersion
Currently for Maven 2 it must be set to
“4.0.0”. “3.0.0” is for Maven 1.1.

� parent
Optionally points to the parent pom
(the parent pom must be of type pom).
� relativePath

Is the location where the parent can be
found (no must). Default: “../pom.xml”

� groupId, artifactId, version
� see next slide…

CAVEAT: there is not automatic
inheritance of the ../pom.xml . You
need to explicitily configure the
dependency.

Content in gray is considered less important

13 © ELCA - Nov 2007 MZE (POS)

Concepts – Maven model

<project>

...

<groupId/>
<artifactId/>
<version/>
<packaging/>

...

</project>

� groupId
Identifier such as “ch.elca.el4j.modules”

� artifactId
Identifier such as “module-core”

� version
Version identifier such as “1.2-
SNAPSHOT” or “1.1.3”

� packaging
The type of the current artifact (pom):
� jar

Is the default. Means that this artifact
contains java source files to compile.

� pom
For artifacts just used as descriptor.
Normal for projects that are not “leafs” of
the artifact hierarchy.

� Further types:
war, ear, maven-plugin

14 © ELCA - Nov 2007 MZE (POS)

Concepts – Maven model

<project>

...

<build>
<sourceDirectory/>
<scriptSourceDirectory/>
<testSourceDirectory/>
<outputDirectory/>
<testOutputDirectory/>

...

</build>

...

</project>

� Build (optional)
Contains the info how to build the
current artifact.
� sourceDirectory

Contains java source files.
Default: “src/main/java”

� scriptSourceDirectory
Contains script files.
Default: “src/main/scripts“

� testSourceDirectory
Like “sourceDirectory” but for test
sources. Default: “src/test/java”

� outputDirectory
Where to compile java sources and copy
scripts and other resources.
Default: “target/classes”

� testOutputDirectory
Like “outputDirectory” but for the test
part. Default: “target/test-classes”

15 © ELCA - Nov 2007 MZE (POS)

Concepts – Maven model

<project>

...
<build>

...

<defaultGoal/>
<resources/>
<testResources/>
<directory/>
<finalName/>

...
</build>
...

</project>

� build
� defaultGoal

Is the goal to execute if no goal is defined on
the command line. Goals will be explained
later. There’s no global default.

� resources
Points to the resource directories. Content will
be copied to the “outputDirectory”.
By default: “src/main/resources”

� testResources
Points to test resource directories. Their
content will be copied to the
“testOutputDirectory”.
By default: “src/test/resources”

� directory
Top-level directory where to put built parts.
Default: “target”

� finalName
The name to use for built objects like jar, war
and ear. Default: ${artifactId}-${version}

16 © ELCA - Nov 2007 MZE (POS)

Concepts – Maven model

<project>

...
<build>

...

<filters/>
<plugins/>
<pluginManagement>

<plugins/>
</pluginManagement>

</build>
...

</project>

� build
� filters

Points to property files used for filtering.
Filtering was explained in the properties
section.

� plugins
Are the plugins to be used in this artifact.
These plugins join the Maven lifecycle.
Typically plugins will not be configured here
but only within the pluginManagement/plugins
section.

� pluginManagement
� plugins

Same as the plugins before but these
plugins do not join the Maven lifecycle.
Typically plugins are preconfigured here.

17 © ELCA - Nov 2007 MZE (POS)

Concepts – Maven model

<project>

...

<profiles/>
<modules/>
<repositories/>
<pluginRepositories/>

...

</project>

� profiles
Contains profiles that can be
dynamically activated by setting a
property, via a jdk version, an os type
or the presence of a file. A profile
contains normal pom.xml content, it can
override parent pom.xml content.

� modules (only for pom artifacts)

Are the child artifacts of the current
artifact. (Only those will be built!)

� repositories
Are the locations from where artifacts
can be downloaded. These repositories
are used for artifacts that are not
maven plugins.

� pluginRepositories
Same as “repositories” but only used to
download maven plugin artifacts.

18 © ELCA - Nov 2007 MZE (POS)

Concepts – Maven model

<project>

...

<dependencies/>
<dependencyManagement/>

<dependencies/>
<reporting/>
<properties/>

</project>

� dependencies
Are the artifacts the current artifact depends
on. Such an artifact has a scope i.e. test
so it is only in classpath for testing (i.e.
JUnit). The default scope is compile ,
meaning that the artifact is always in the
classpath.

� dependencyManagement
� dependencies

Same as previous but the current artifact
does not have a dependency to them. It
is used to preconfigure dependencies,
used in child artifacts. Analogue to
“plugins” and “pluginManagement”.

� reporting
Are special Maven plugins used for site
generation. They join the Maven lifecycle
like plugins referenced in previously shown
“plugins” element.

� properties
Are name-value-pairs that can be used to
simplify configuration.

19 © ELCA - Nov 2007 MZE (POS)

Concepts – Maven lifecycles

A lifecycle is a combination of one or more phases

Maven knows by default the following three lifecycles:
� default

Is used for most activities on artifacts like performing a build.

� clean
Is used to delete generated parts.

� site
Is used to generate a website for the current artifact.

A lifecycle has one or more phases, and goals can be attached to a
phase. When phases of the lifecycles above are started, some
predefined plugin-goals are automatically executed.
More about this on the next slides…

20 © ELCA - Nov 2007 MZE (POS)

Concepts – Maven lifecycles

lifecycle “default” (1)

validate initialize

generate-
sources

process-
sources

generate-
resources

process-
resources

compile
process-
classes

generate-test-
sources

process-test-
sources

generate-test-
resources

process-test-
resources

test-
compile

test

Process
commons
attributes
compiler.

Example task
that could be
executed in
the phase

drawn above.
Validate

“web.xml” file
of a webapp.

Generate
“application.xml”

for EAR.

Copy filtered
and unfiltered
resources to

classes
directory.

Execute JUnit
tests.

Phase

Important
phase

Legend

21 © ELCA - Nov 2007 MZE (POS)

Concepts – Maven lifecycles

lifecycle “default” (2)

package
pre-integration-

test
integration-

test
post-integration-

test

verify install deploy

Create JAR,
WAR or EAR.

Start webserver
and deploy

webapp via the
cargo plugin.

Execute web
service JUnit

tests.

Undeploy
webapp and

stop webserver.

Install artifact
into local

repository.

Install artifact
into remote
repository.

22 © ELCA - Nov 2007 MZE (POS)

Concepts – Maven lifecycles

lifecycle “clean”

pre-clean clean

Remove
directory
“target”

recursive.

post-clean

23 © ELCA - Nov 2007 MZE (POS)

Concepts – Maven lifecycles

lifecycle “site”

pre-site site

Generate
Javadoc,

Checkstyle
reports, …

post-site site-deploy

Upload the site
to the

SourceForge
Webserver via

SSH.

24 © ELCA - Nov 2007 MZE (POS)

Using mvn on the command line

How to launch maven on the command line:

mvn <artifactId:goal> : execute the goal goal of the
artifcact id artifactId

mvn <groupId :artifactId: version :goal>

mvn <phase> : execute up to phase <phase>

You can combine multiple goals or phases on the command line
such as mvn clean install db:start

25 © ELCA - Nov 2007 MZE (POS)

Concepts – Maven plugins (selection)

Short plugin list

DescriptionPlugin

Build a WAR from the current project.war

Run the Junit tests in an isolated classloader.surefire

Build a JAR of sources for use in IDEs and distribut ion to the repository.source

Generate a site for the current project.site

Copy the resources to the output directory for incl uding in the JAR.resources

Generate a source cross reference (analog to javadoc).jxr

Generate Javadoc for the project.javadoc

Build a JAR from the current project.jar

Install the built artifact into the local repositor y.install

Get information about the working environment for t he project.help

Build an EJB (and optional client) from the current project.ejb

Generate an Eclipse project file for the current pr oject.eclipse

Generate an EAR from the current project.ear

Deploy the built artifact to the remote repository.deploy

Compiles Java sources.compiler

Clean up after the build.clean

Generate a checkstyle report.checkstyle

Build an assembly (distribution) of sources and bin aries.assembly

Run a set of ant tasks from a phase of the build.antrun*
*
*

26 © ELCA - Nov 2007 MZE (POS)

Parent inheritance vs. artifact dependencies

Two ways to “reuse” configuration:

Parent inheritance
� Most of the pom.xml files are “merged”
� Use this for:

� plugin definitions
� build process definitions

� Don’t use this for dependencies (you get typically “too much” when you
use this for dependencies, only “single inheritance” is possible)

Dependencies to other artifacts (jars, other maven projects)
� Normal transitive dependencies (A -> B, B -> C => A -> C)
� Dependencies can have a scope (test, runtime, compile, provided) to be

activated only in certain cases.
� Use this for:

� When you require other maven artifacts (jar/ ear/ war files).
� Either: external libraries or other modules (both are treated the same!)

=>Artifact dependency provides a subset of the parent inheritance.

27 © ELCA - Nov 2007 MZE (POS)

Concepts – Artifact lookup in repositories

http://repo1.maven.org/
maven2/

http://el4.elca-services.ch/
el4j/maven2repository/

http://leaffy.elca.ch/
java/maven2repository/

Hierachy of Maven2
repositories:

Local Repository
(i.e. D:\m2repository\)

local
rem

ote

If an artifact has a dependency to
another artifact or a plugin, Maven will
go through the given repositories until it
finds the requested artifact.

As shown in the Maven model we can
have separate repositories for plugins
and their dependencies and separate
repositories for all other dependencies.

In EL4J we use the “ibiblio” repository
only as “pluginRepository” to prevent
having unexpected dependencies.

S
earch

order

28 © ELCA - Nov 2007 MZE (POS)

Concepts - Proximity

Proximity is a proxy for maven repositories:
http://blogs.sonatype.com/jvanzyl/2007/11/21.html

Direct connection :

Indirect connection (with Proximity):

29 © ELCA - Nov 2007 MZE (POS)

Concepts - Continuous integration with Hudson

Hudson can rebuild your project automatically:
� Periodically (e.g. every night, every 2 hours)
� Whenever there is a change in SVN
Hudson for EL4J:
� http://wiki.elca.ch/twiki/el4j/bin/view/EL4J/AutomaticBuildInfrastructure

30 © ELCA - Nov 2007 MZE (POS)

Mvnrec – recursively build a mvn project

� Recursive Maven: reimplementation of the build.rec from LEAF and EL4Ant
� In your project you can say:

mvnrec clean install

maven then automatically executes the phases clean and install for all the
local projects your project depends on (at the end it executes the phases for your
project)

� Example: Let's assume you have the following directory and project structure
(with the following dependencies: core � remoting_core � remoting_jaxws):

� If you are currently working on the module remoting_jaxws and made also some changes in
the module “core" it requires. Now, you can change to the directory /modules/remoting_jaxws and
type in there
mvnrec install

� mvnrec scans the directories, finds all other modules and executes the command only in the
dependent projects core and remoting_core before it is executed in remoting_jaxws . The
project hibernate is ignored because it's not a dependency of remoting_jaxws .

31 © ELCA - Nov 2007 MZE (POS)

Mvnrec – recursively build a mvn project

Recursive Maven (ctd.)
� Usage: mvnrec [OPTIONS] MAVEN_COMMAND [MAVEN_COMMAND]...

� Options:
� -ff fail-fast (interrupt the build at the first failure)

the default is to fail only at the end of the build (“fail at end”)
� -b force scanning of folders and creation of bootstrap-file

(mvnrec caches dependencies (for better performance))
� -v produce mvnrec debug output

In the EL4J team we are already using mvnrec a lot and are very happy
with the feature!

32 © ELCA - Nov 2007 MZE (POS)

Maven 2 – The powerful build system

1. Installation

2. Concepts

3. Where to find …

4. Daily usage

5. Advanced usage

����

33 © ELCA - Nov 2007 MZE (POS)

Resources

� Documentation
� Maven CheatSheet (our recommended default reference)

http://wiki.elca.ch/twiki/el4j/bin/view/EL4J/MavenCheatSheet
� FAQ with many ideas how to fix maven issues:

http://wiki.elca.ch/twiki/el4j/bin/view/EL4J/FrequentlyAskedQuestions
� Book: Better Builds with Maven – The How-To guide for Maven 2 (PDF)

� http://www.mergere.com/m2book_download.jsp
� Getting started guide of maven

� http://maven.apache.org/guides/getting-started/index.html
� EL4J wiki: http://wiki.elca.ch/twiki/el4j/bin/view/EL4J/MavenBuildSystem
� Available plugins from Apache and Codehaus

� http://maven.apache.org/plugins/index.html
� http://mojo.codehaus.org/

� Help
� Subscribe to the very active Maven user mailing list (users@maven.apache.org).
� Use Google to find help in Maven user mailing list

http://www.google.ch/search?q=site:http://mail-
archives.apache.org/mod_mbox/maven-users+MY SEARCH QUERY
� To only get messages from 2006 just modify the URL a bit

http://www.google.ch/search?q=site:http://mail-
archives.apache.org/mod_mbox/maven-users/2006+MY SEARCH QUERY

34 © ELCA - Nov 2007 MZE (POS)

Maven 2 – The powerful build system

1. Installation

2. Concepts

3. Where to find …

4. Daily usage

5. Advanced usage

����

35 © ELCA - Nov 2007 MZE (POS)

Daily usage

� cd EL4J_ROOT/external

� mvn –N install

� Take a look at your local repository.
� mvn –N
� mvn install -Dmaven.test.skip=true

� cd framework/modules/core

� mvn clean

� Inspect content of current directory.
� mvn compile

� Inspect directory target.
� mvn test

� mvn surefire:test

� What is the difference between “mvn surefire:test ” and “mvn test ”?

Avoids recursion

No phase or goal:
default goal

Skip tests

36 © ELCA - Nov 2007 MZE (POS)

Daily usage

� Remove directory el4j-framework-modules from local repository
(M2_REPO/ch/elca/el4j/modules).

� mvn clean
� mvn compile

� What happens? Why?
� cd ../remoting_core
� mvn clean
� mvn compile

� What happens? Why?
� cd ..
� mvn –N install
� cd core
� mvn install -Dmaven.test.skip=true
� cd ../remoting_core
� mvn install -Dmaven.test.skip=true

� cd ../core
� mvn site

el4j

el4j-framework

el4j-framework-
modules

module-core

module-
remoting_core

project dependency
of this example:

37 © ELCA - Nov 2007 MZE (POS)

Daily usage (– answers to questions)

Certain goals of the compile phase require another project to
exist. The phase clean does not require a project, but the phase
compile needs other projects (it needs the compiled code in
order to run).

Maven does only build other projects in certain cases! The
previous slide illustrates the 2 different cases:

� In the first case it works, because mvn directly looks in the direct directory
or pom hierachy (but not in transitive dependencies!)
This is different from the EL4Ant behavior!

� In the second case it does not work, because the dependency is not in the
direct hierarchy (=subdirectory) of the artifact.

Remark: we would actually prefer the earlier EL4Ant behavior and
will look into how to achive it. For now we keep the maven
convention as it directly follows from some core maven
hypothesis.

38 © ELCA - Nov 2007 MZE (POS)

Daily usage - Eclipse

� Start Eclipse with workspace
EL4J_ROOT/external/framework/workspace

� Import your preferences (e.g. preferences-external.epf).
� Close Eclipse.

� mvn -N eclipse:add-maven-repo
-Declipse.workspace=

"EL4J_ROOT/external/framework/workspace"

� By this command the classpath variable M2_REPOhas been
added to the given workspace (you can also set the eclipse
build variable M2_REPO manually).

� Start Eclipse again with the same workspace.

el4j

el4j-framework

el4j-framework-
modules

module-core

module-
remoting_core

39 © ELCA - Nov 2007 MZE (POS)

Daily usage - Eclipse

� mvn eclipse:clean eclipse:eclipse

� Creates the Eclipse project newly for
module-remoting_core

� Import this project in opened workspace. Does the
project compile in Eclipse?

� cd ..

� mvn eclipse:clean eclipse:eclipse

� Go into Eclipse and refresh project
module-remoting_core

� Does the project still compile in Eclipse?
� Import project module-core in Eclipse and refresh both

projects.

Take care : if you create eclipse files (.project and .classpath)
for a set of projects together, it establishes direct (=eclipse-
level dependencies), if you create them individually it
establishes links to the local mvn repository.
The <reactorProjectGroupIdPrefixes> parameter
fixes this.

el4j

el4j-framework

el4j-framework-
modules

module-core

module-
remoting_core

40 © ELCA - Nov 2007 MZE (POS)

Daily usage

� Eclipse issues
� Eclipse is just a helper for Maven, it is not a replacement!

� Examples: Filtering of environment files, …
� Executed tests in Eclipse can have different results than executed tests with

Maven. The relevant results (for us) are the ones from Maven. There can be
various causes for this behaviour:
� Eclipse projects don’t separate the compile and test scopes but Maven does.

This can be dangerous i.e. if dir test resources contains Spring bean xml files in
directory “mandatory”!

� Maven always has dependent artifacts as jar files in its classpath. In Eclipse,
depending on the execution level/directory of the “mvn eclipse:eclipse”
command, some dependencies are in classpath as jar and some directly as
directory with its classes. The test classes itself are always via directory in
classpath.

� Eclipse has its own compiler. There are some cases
(specially Java 5 syntax) tests work if classes
compiled with Eclipse compiler and don’t work if
classes are compiled with Sun’s compiler. The (for us)
relevant compiler is the one from Sun.

41 © ELCA - Nov 2007 MZE (POS)

Daily usage – Problem solving

� A list of potential maven issues with their solution can also be found
under:
� http://wiki.elca.ch/twiki/el4j/bin/view/EL4J/FrequentlyAskedQuestions

� mvn –N help:effective-pom

� Prints the effective pom on console. You can define the parameter output to
get the effective pom in a file. Example:
mvn –N help:effective-pom –Doutput=effective-pom.xml

� mvn –N help:effective-settings

� Prints the effective settings on the console. You can define the parameter
output to get the effective settings in a file. Example:
mvn –N help:effective-settings –Doutput=effective-s ettings.xml

���� The settings file in the directory ~/.m2/ does override settings
configured in directory M2_HOME/conf/

42 © ELCA - Nov 2007 MZE (POS)

Daily usage – Missing third party artifacts

Sometimes you create an artifact and this artifact must have a dependency to a
third party jar such as “spring-2.0.jar”. With the repository helper from EL4J you
have the possibility to easily install this new artifact in your local repository and
directly in a remote repository. The jar file must have the following name:

name-version .jar

If you have a zip that contains the java source as well, this zip must have the
following name:

name-version -src.zip

The name will be the artifactId. The groupId of the artifact will be determined by
taking the delta between your given library system path (libraryDirectory)

and the path of where these files are located. Slashes or backslashes in this
delta are replaced by dots. No leading/trailing dots are permitted. The next slide
shows an example of this.

43 © ELCA - Nov 2007 MZE (POS)

Daily usage – Missing third party artifacts

In the example on the left the following task has been
executed in SOME_DIR.

mvn repohelper:install-libraries
-DlibraryDirectory=libraries

The artifact org.springframework:spring:1.2.8 is now
installed in the local repository and ready for local
use.

To deploy libraries to a remote server just use the goal
deploy-libraries instead of install-libraries
and with additional parameter repositoryId . If the
repository with this id is not defined in your pom.xml
(see element distributionManagement) you must in
additionally add the parameter repositoryUrl or
repositoryDirectory that points to the remote
repository. BTW, the username and password can
be saved in the settings.xml file.

In EL4J_ROOT/external/helpers/upload there are two
helper artifacts to install/deploy libraries in the
external and internal repository. Example: Just put
your libraries in EL4J_ROOT/external/helpers/
upload/external/libraries and execute the
specific goal without any parameters in
EL4J_ROOT/external/helpers/
upload/external .

44 © ELCA - Nov 2007 MZE (POS)

Database plugin usage

Launch and re-init db (of current
project), block until Ctrl-C:

cd newApplication

mvn db:prepare db:block

Same without db launch
mvn db:silentDrop db:create

Applies all SQL scripts of your
project and all projects it depends
on.
Scripts are applied in “right” order
(root�leaf for creation, leaf-> root
for destruction)

Module Core

-Code

-Configuration

-Jar-Files

Module WebTools

-Code

-Configuration

-Jar-Files

Module Security

-Code

-Configuration

-Jar-Files

Module NewApplication

-Code

-Configuration

-Jar-Files

dependency
Module jmx

-Code

-Configuration

-Jar-Files

root

leaf

45 © ELCA - Nov 2007 MZE (POS)

Maven Dependency Graph plugin

46 © ELCA - Nov 2007 MZE (POS)

Maven Dependency Graph plugin

� Display Overview over a project’s dependencies
� Two goals are available:

� Depgraph
� Displays a singe project’s dependencies

� Fullgraph
� Displays the whole dependency structure for all maven projects in this

and all subfolders
� Uses Graphviz to draw the graph
� Various configuration properties

� Filter the artifacts’ name, group and version using regular expressions
� Create DOT file for further processing with other tools

� Example

mvn depgraph:fullgraph -Ddepgraph.groupFilter="ch.elc a"

47 © ELCA - Nov 2007 MZE (POS)

Maven 2 – The powerful build system

1. Installation

2. Concepts

3. Where to find …

4. Daily usage

5. Advanced usage����

48 © ELCA - Nov 2007 MZE (POS)

Advanced usage

� cd EL4J_ROOT/external/framework/tests

� mvn –N

� cd remoting

� mvn install

� What happens? Why? Have a look at the pom.xml files.

el4j

el4j-framework

el4j-framework-
tests

module-
remoting-tests-

web

module-
remoting-tests-
functional_tests

el4j-framework-
tests-remoting

Hierarchy
(dependencies)
of pom.xml files

49 © ELCA - Nov 2007 MZE (POS)

Advanced usage (answers to questions)

It executes the functional tests:
� Create jars, wars, start tomcat, deploy the war, execute functional

tests, undeploy war, stop tomcat
� In case tomcat does not yet exist, it is automatically downloaded (by

default in the external-tools directory)

50 © ELCA - Nov 2007 MZE (POS)

Advanced usage

� cd EL4J_ROOT/external/framework/demos

� mvn –N

� cd daemon_manager

� mvn install

� cd controller
� mvn exec:java

� Which class will be executed?
� Open another command line

� cd EL4J_ROOT/external/framework/demos/
daemon_manager/console

� Take a look in the pom.xml file to know what the
following commands will execute.
� mvn exec:java –Dexec.args=“information”

� mvn exec:java –Dexec.args=“reconfigure”

� mvn exec:java –Dexec.args=“stop”

el4j

el4j-framework

el4j-framework-
demos

module-daemon_
manager-demos-

common

module-
daemon_manager-

demos-console

el4j-framework-
demos-daemon_

manager

module-
daemon_manager-
demos-controller

51 © ELCA - Nov 2007 MZE (POS)

Advanced usage (solution)

It executes the daemon manager (= the controller) on the console.
You can then access the controller from remote (via the console
(see the 3 actions from the previous slide))

52 © ELCA - Nov 2007 MZE (POS)

Problem solving

� mvn –N help:describe -DgroupId=...
–DartifactId=... -Dfull=true

� Describs all goals of the given plugin (groupId & artifactId).
Example:
mvn –N help:describe -DgroupId=ch.elca.el4j.plugins

–DartifactId=maven-env-support-plugin -Dfull=true

� mvn –N help:describe -DgroupId=...
–DartifactId=... –Dmojo=... -Dfull=true

� Describes the given goal (aka mojo) of the given plugin. Example:
mvn –N help:describe -DgroupId=ch.elca.el4j.plugins

–DartifactId=maven-env-support-plugin
-Dmojo=resources -Dfull=true

� Instead off groupId & artifactId you can use parameter plugin with format
groupId:artifactId and you can even use the plugin prefix. Examples:

mvn –N help:describe –Dplugin=repohelper
-Dmojo=deploy-libraries -Dfull=true

mvn –N help:describe –Dplugin=jar
-Dmojo=sign -Dfull=true

53 © ELCA - Nov 2007 MZE (POS)

Classloading and multiple JVMs

Maven uses internally the library classworlds (an improvement to
the normal classloader hierachy) to organize the classpaths.

Sometimes mvn and applications launched with mvn run in 2
different JVM.

54 © ELCA - Nov 2007 MZE (POS)

Maven plugins

Plugins, mojos, goals and phases

Plugin Mojo

Phase

Goal
1 1 .. n 1 is a

can belong to a

org.apache.
maven.plugins:

maven-jar-
plugin

org.apache.
maven.plugin.

jar.JarMojo

jar

packageExecution examples:

$ mvn org.apache.maven.plugins:maven-jar-plugin:jar

$ mvn jar:jar

$ mvn package
���� Attention: All goals of mojos bound to
phase <= “package” will be executed!

Typically a java class or
a bsh script

55 © ELCA - Nov 2007 MZE (POS)

Plug-in development

� A plugin artifact is like a jar artifact (= a project that generates a jar-file).
� The packaging of its pom must be set to maven-plugin .
� Mojos can be annotated with Commons Attributes, so no plug-in descriptor

must be written.
� A class needs to implement the interface org.apache.maven.plugin.Mojo to

be a mojo.

� Plugins of EL4J are in the directory
EL4J_ROOT/external/maven/plugins
� maven-checkclipse-helper-plugin

� maven-env-support-plugin

� maven-manifest-decorator-plugin

� maven-repohelper-plugin

� maven-database-plugin

� maven-depgraph-plugin

� maven-jaxws-plugin

� maven-version-plugin

� Remark: writing a plugin is quite easy!

Lausanne I Zürich I Bern I Genf I London I Paris I Ho Chi Minh City

Martin Zeltner
Software Engineer
martin.zeltner <at> elca.ch

Steinstrasse 21
CH-8036 Zürich
+41 (0)44 456 32 11

Thank you for your attention

For further information
please contact:

57 © ELCA - Nov 2007 MZE (POS)

Where to find …

� Plugins
� Use Google to find out available plugin versions

http://www.google.ch/search?q=site:ibiblio.org/maven2+MY SEARCH QUERY

� Issue Management
� Maven Components

� http://jira.codehaus.org/browse/MNG
� Other Maven Technologies and Maven Plugins

� http://jira.codehaus.org/secure/BrowseProjects.jspa
� Go to categories “Maven Technologies” and “Maven 2 plugins”

58 © ELCA - Nov 2007 MZE (POS)

Where to find what is inside Maven 2

� Maven Wagon
� http://maven.apache.org/wagon/
� Maven Wagon is a transport abstraction that is used in Maven's artifact and

repository handling code.
� Used to down- and upload artifacts.
� Protocols file, http, https, ftp, sftp, svn and scp are available.

� Plexus Container
� http://plexus.codehaus.org/
� Plexus is similar to other inversion-of-control (IoC) or dependency injection

frameworks such as the Spring Framework
(http://www.springframework.org).

� Used for configuration.

