

Reference Documentation

EL4J 3.1

Imput. Report Version Date Author(s) Status Visa
6220 EL4J 3.1 23.12.10
6220 EL4J 1.7 15.12.09 POS, MZE,

SWI, DZI,
JHN

final

ELCA Informatique SA, Switzerland, 2009.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 2 / 320
ELCA Informatique SA, Switzerland, 2009.

Table of Contents

Introduction14

Unique Features of EL4J ...15

Maven 2 and installing modules..................... ...19

Maven 2 19

Installing modules..19

Documentation for module core...................... ..20

Purpose 20

Support for Maven 2 modules on the level of Spring ...20
Module abstraction of Maven 2..21
ModuleApplicationContext ...22
Convention on how to organize configuration ..22

Examples ...24
Usage of configuration using this convention27

Java 5 annotations for Transactions..29
Transaction propagation behaviors..30
Programmatical transaction demarcation (start transaction, commit, rollback in

code)..31
setRollbackOnly is not equals to setReadOnly...31

Old support support with attributes (pre JDK 5, now deprecated)32

Annotation/ metadata convenience ...32
Linking annotations to interceptors ..32
Implementation of an interceptor..34
Semantics of the inheritance..36

Search service ..41
Query Object Events..43

Additional Features ...44
Configuration merging via property files...44
Bean locator ..45
Bean type auto proxy creator...45
Exclusive bean name auto proxy creator ...45
Abstract parent classes for the typesafe Enumerations Pattern (consider using

the new JDK 5 enums)...46
Reject (Precondition checking) ..46
JNDI Property Configurers...47
Generic configuration...47
Pattern and Interface for the implementation of codelists...............................47
Generic repository ...47

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 3 / 320
ELCA Informatique SA, Switzerland, 2009.

DTO helpers ..47
Primary key ...48
SQL exception translation..48

Packages that implement the core module..48

Documentation for module remoting.................. ..49

Purpose 49

Introduction ...49

Remoting modules ..50

How to use ..51
Basic configuration ..51

Recommended configuration file organization..................................51
Configuration summary ..55

How to use the Rmi protocol..58
How to use the Hessian protocol ...58

Create a web-deployable module...58
Register Spring's DispatcherServlet ...59
Loading Spring configuration file(s) ..60
Needed module classes and libraries...62
Reloading context ..63
Test your service and find logging information63

How to use the HttpInvoker protocol ..64
How to use the web service protocol based on JAX-WS 2.1..........................64
How to use the EJB protocol..64
How to use the Load Balancing composite protocol.......................................64

Handling Connection Failures ..67
Policies 68
Limitations..69
Further reading ..69

Introduction to implicit context passing...70
Use of ThreadLocal..71

Benchmark ..72
Remoting semantics/ Quality of service of the remoting.................................73

Cardinality between client using the remoting and servants providing
implementations ...73

What happens when there is a timeout or another problem during
remoting ...74

Internal design...75
Sequences ..75

Sequence diagramm from client side ...75
Sequence diagramm from server side..77

Creating a new interface during runtime ..79
Internal handling of the RMI protocol (in spring and EL4J).............................79
To be done ..80

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 4 / 320
ELCA Informatique SA, Switzerland, 2009.

Related frameworks ..80
extrmi 80
Javaworld 2005 idea..81

Documentation for module Jax-WS remoting82

Purpose 82

How to use ..82
Adaptations for Java 6 ...82
Notes on JAX-WS server deployment..82
Two usage scenarios and their differences..82

Common configuration files..84
Client only (pure consuming of a provided webservice)....................90
Server and Client (create a new webservice and use id)..................91

Avoid LazyInitializationExceptions while marshaling persisted objects95
Implementation constraints (for EL4J version 1.5.1 and below)96
Development ...98
WS security with JBoss ...100
Known limitations...100

Documentation for module EJB remoting101

Purpose 101

Important concepts..101

How to use ..101
Configuration ...101

How to use the EJB protocol ..102
How to use the build system plugin ..105
How to use the EJB remoting module without the EL4Ant? build

system..106

References..106

Internal design...107
EJB generation ..107
Adding support for another container...109

Generic DAOs in EL4J ...110

Basic introduction..110
QueryObject ..112

Sometimes we can omit or bypass the service layer ...114

Benefits of the approach..116

References..116

Documentation for module Swing..................... ..118

Purpose 118

Introduction ...118

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 5 / 320
ELCA Informatique SA, Switzerland, 2009.

Features of the EL4J GUI framework ..118

Some extensions to the integrated frameworks ...123
Properties files (AppFramework)..123
Action context (AppFramework)...124
Bind non standard GUI components ..124

How to get started with our demo application ..124
Demos 125

Technologies used internally in the framework ..127

Configuration...128

TODOs 129

GUI programming hints ...129

References..130

Documentation for XML GUI representation in module Swing132
Introduction..132
Namespaces..134
XML Tags ..134
AppFramework integration...135
BeansBinding integration...136

Simple Bindings ...136
List Bindings ..136
Combobox Bindings...137
Table Bindings ...137
General remark on attribute 'property' ..139

Additional tags ...139
Flat Toolbar..139
Designgridlayout ..139
Create component structures in Java...140

Hints 141

Documentation for binding in module Swing..141
General 141
Binding components using XML...141
Binding components using Java code and annotations................................142
Binding components using BeansBinding directly..143

Documentation for module Hibernate................. ..144

Purpose 144

How to use ..144
Criteria transformation ...144
Generic Hibernate DAO...145
Hibernate validation support ..145

JPA Extension...147

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 6 / 320
ELCA Informatique SA, Switzerland, 2009.

How to use ..147
Entity Lifecycle...148
ConvenienceGenericJpaDao? ...149
References on JPA..150

References..150

Documentation for module web151

Purpose 151

Features..151

How to use ..151
General configuration of the web module...151

Reference documentation for the Module-aware application contexts152
Concept 152

ModuleDispatcherServlet ...153
ModuleContextLoader..154

Build system integration...155
Adding files manually ...155

Limitations ...156
MANIFEST.MF configuration section format...156
Implementation Alternative: Idea..157
Resources ...158

Documentation for module security159

Purpose 159

SSL certificate creation ...159

Features..159
NT login demo ...159
Basic User Admin GUI and components..159
A limited security demo is in the JSF template...159
A GUI demo with security ..159
Implicit context passing..160
NTLM support..160
Encrypt passwords that go over the wire ...160
Block requests from unauthorized IP addresses ..161
Basic HTTP authentication via JNDI (i.e. LDAP)..162

How to use ..162

References..162

Documentation for module exception handling........ ...163

Purpose 163

Important concepts..163

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 7 / 320
ELCA Informatique SA, Switzerland, 2009.

How to use ..164
Configuration ...164

Exception handlers ..164
Example 1: Safety Facade for one Bean..165
Example 2: Context Exception Handler ..166
Example 3: RoundRobinSwappableTargetExceptionHandler.........168
Example 4: Using several exception handlers, each configured by a

separate exception configuration......................................171

References..173

Internal design...173
Context Exception Handler ..174

Documentation for module JMX....................... ...175

Purpose 175

Introduction to Java management eXtensions (JMX)...175

Feature overview...176

Usage 177
Spring/JDK versioning issue ..177

Spring versions 1.1 <-> 1.2 ..177
JDK versions 1.4.2 <-> 1.5...178

Basic Configuration (implict publication) ..178
Connector..179

HtmlAdapter...179
JmxConnector..180

Example with one ApplicationContext ..180
Configuration (explicit publication) ...181
Example with more than one ApplicationContext ...184

Implemented Features ..184
JVM-Monitor ..184
Log4jConfig? ...186
Spring Beans...189
JDK 1.5 Standard MBeans ..189

Patch 190

References..190

Documentation for module TcpForwarder191

Purpose 191

Limitations...191

Important concepts..191

How to use ..192
Command line user interface to switch TCP connections on or off...............192

Parameters (tbd in code)..192

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 8 / 320
ELCA Informatique SA, Switzerland, 2009.

Commands ..192
Notes 193

Programmatically halting and resuming network connectivity193
Code configuration...193
Switch on / off connections...194

Demonstration code ..194

Documentation for module Light Statistics.......... ..195

Purpose 195

Important concepts..195
Monitoring strategies ...195

How to use ..195
Configuration ...195
Demo 196
How to set up the module-light_statistics for the ref-db sample application..196

binary-modules.xml..196
project.xml ...197
Limit the set of interecepted beans...197

FAQ 198

References..198

Documentation for module Detailed Statistics....... ..199

Purpose 199

Important concepts..199

What can be measured? ...199

Description of the attributes of a measurement ...199

How to use ..200
Configuration ...200
How to get the statistics information via JMX...200
Demo 201

Documentation for module ShellLauncher............. ..202

Purpose 202

How to use ..202

Documentation for module XmlMerge204

Purpose 204

Introduction ...204

Module contents..205

Important concepts..206
Original and Patch ...206
Processing model ..206

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 9 / 320
ELCA Informatique SA, Switzerland, 2009.

Core Concepts as Java Interfaces ...207
Operations ...208
Configuration with Factories...208

Built-in implementations ..209
Operations...209

Matchers ..209
Mapper 209
Actions 209

Aliases for Built-In Operations ...210
XmlMerge Implementation ...211
Operation Factories ...211

Configuring your Merge...211
Programming the Configuration ...211
Configuring with XPath and Properties ..213
Configuring with Inline Attributes in Patch Document...................................214

Writing your own Operations ...216

How to use ..218
Command-line Tool ...218
Ant Task ..219
Spring Resource..220
Web demo ...221
Debug output ...221

References..221

Documentation for module SocketStatistics.......... ..223

Purpose 223

Important concepts..223
Logging 223

How to use ..224
Method 1 - inside your code...224
Method 2 - directly by the java vm / runtime...224

Monitoring using M(X)Bean ...225
Operations in the SocketStatistics M(X)Bean...226

Usage Example(s)...227
On Tomcat with Method2...227

The Hibernate Offliner............................. ...228

Introduction ...228
Purpose 228
Site map/ structure of documentation ..228
Offliner Terminology ..229

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 10 / 320
ELCA Informatique SA, Switzerland, 2009.

Usage 229
Offliner demo...230
Offliner setup ...230
Setup in detail..231

Common beans (client and server) ..231
Server-side beans..232
Client-side beans ...233

Setting up the database...236

Offliner Specifications..238
Functionality ..238
Conflicts 239
Deleting 239
Offliner Key and Version handling..240

Hibernate's assumptions ..240
Getting past these assumptions ...240

The mapping entry...241
Key and Version Modification ..241

Adding an object to the local database that is new there................241
Updating an object in the local database with a new server version242
Synchronizing a locally changed object with the server (Phase 1)..242
Synchronizing a new object in the local database with the server

(Phase 1)..243
Synchronizing a remotely changed object (Phase 3)......................243
Forcing an overwrite in the local database243
Forcing an overwrite on the server ...243

Offlining/Batching strategies ..244
Purpose 244
Strategies...244

Offliner test cases..246
Running tests...246
Strategy-independent tests ..246
Strategy dependent tests ...247

Offliner Implementation ...248
The mapping table...248
Versioning ...249
Object graph traversal ...250
Synchronization and conflicts ..251
Algorithm choice ..251
Offlining 252
Synchronization ...254

Phases 255
Changed data ..255
Deleted data ..255
Unchanged data...255
Conflict resolution ..256

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 11 / 320
ELCA Informatique SA, Switzerland, 2009.

Mapping entries ...256
Key Management and Requirements...257

Requirements...257
Default implementation (for derby/db2) ..258
Test implementation for oracle ...259
Custom implementations..259

The Graph Walker ...259

The Object Wrapper ..261
Motivation ..261
Other Approaches ...262
Using Wrappers...263
The ObjectWrapper package implementation ..265
Writing your own wrappers ..266
Naming 267

Version History and Future Plans for Cacher/Offliner ..267
Before "0" ..267
Cacher "0" ...268
Cacher 0.1...268
Cacher 0.5...268
Offliner 0.6...269
Offliner 1.0-SNAPSHOT ..269
Offliner 1.0.1-SNAPSHOT ...269
Project: Change tracking..270
Project: Identity fixing...270

Exception handling guidelines...................... ..271

Topics 271

When to define what type of exceptions? Normal vs. abnormal results271
Further examples...272
How to handle normal and abnormal cases ...273

Implementing exceptions classes ..273

Handling exceptions ..274
Where to handle exceptions? ..274
How to trace exceptions?...274
Rethrowing a new exception as the consequence of a caught exception.....275

Related useful concepts and hints...275
Add attributes to the exception class ...275
Mentioning unchecked exceptions in the Javadoc275
Checking for pre-conditions in code...276
Exception-safe code ..276
Handling SQL exceptions ..277

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 12 / 320
ELCA Informatique SA, Switzerland, 2009.

Exceptions and transactions ..277
SafetyFacade pattern ..277
Correlation ID ..278

Antipatterns...279

References..280

Maven plugins282

Database plugin ..282
Overview ...282
Goals 284

Goal start ...284
Goal create ..284
Goal update ...284
Goal delete ..285
Goal drop...285
Goal silentDrop ..285
Goal stop ...285
Goal block..285
Goal prepare..285
Goal cleanUp ...286
Goal destroy ..286
Goal run 286

Properties ..287
Example usage..288

Console 288
Integrating plugin into build lifecycle...288

Dependencies to external jars ...290
References ..290

DepGraph plugin ...291
External prerequisites ..291
Description ..291
Goal depgraph...292

Properties ..292
Goal fullgraph ..292

Properties ..292
Links 292
Advanced usage..293
Open Issues ..293
Examples...294

Command line..294
Sample Output graphs ...294

Version plugin ...296
Goals 296

Goal list 296
Goal overview ..296

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 13 / 320
ELCA Informatique SA, Switzerland, 2009.

Goal version...297
Known Issues...297
Example Output ...297

Environment plugin..301
Question 1 ...301
Answer 1 ...301
Question 2 ...302
Answer 2 ...302

MavenRec plugin...302
Introduction..302
Requirements ..303
Usage 303

Options 303
Bootstraping...304

Example ..304

Spring IDE and maven-spring-ide-plugin ...305
Viewing a set of beans files in Spring IDE (general method)........................306
What the maven beans plugin does:..306
What you get ...306
Usage 307

For normal apps...307
For web apps: ..308

Important notes..308

Cobertura runtime plugin...309
Introduction..309
What does the plugin do? ..309
Configuration properties, pom properties ...310
How to use ..311
Links 315

Acknowledgments.................................... ..316

References... ...319

Record of changes320

References... ...320

Abbreviations320

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 14 / 320
ELCA Informatique SA, Switzerland, 2009.

 Introduction
EL4J (http://el4j.sourceforge.net/), the Extension Library for the J2EE? , adds
incremental improvements to the Spring Java framework
(http://www.springframework.org/). Among the improvements are:

• The ability to split applications in modules that each can provide their own
code and configuration, with transitive dependencies between modules

• Simplified POJO remoting with implicit context passing, including support
for SOAP and EJB

• A light daemon manager service for long-running daemons

• Support to see the active beans and their configuration in JMX

• A light exception handling framework that implements a safety facade

• Improvements for Spring RCP

Used libraries and tools

• Most libraries that are included in the spring framework

• Maven 2

For another short introduction to EL4J we refer to the EL4J datasheet available
on our company webpage.

EL4J is a package for Java developers - ready to start working. It is an explicit
goal of EL4J that you should not loose time and be able to get working right away.
From version 1.1 it is published under the LGPL
(http://www.gnu.org/licenses/lgpl.txt) at sourceforge. Please contact info@elca.ch
for other licensing.

EL4J is already in use in 16+ projects within ELCA (http://www.elca.ch).

This documentation was auto-generated from content of our twiki. Some of the
URL-links are undefined (due to the way we created it) and some content is still
emerging.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 15 / 320
ELCA Informatique SA, Switzerland, 2009.

Unique Features of EL4J
This document lists the distinctive features of EL4J. A frequent question about
EL4J is what it provides additionally to the frameworks it includes. One benefit of
EL4J is certainly the selection, integration, and pre-configuration of leading
components. More benefit comes from the new features that EL4J provides.

The following list shows the distinctive features of EL4J (this list is not exhaustive,
please check also the module documentation and the javadoc):

• Application templates to get quickly started: for GUIs and Web UIs. The
goal is to have a running sample application within 10 minutes! In this
running application you have a proven structure and sample solutions for
typical development issues.

• Support for modules with code, default configuration and dependencies.

This feature is based on the build system (Maven 2), the basic spring
abstractions, some EL4J support and conventions.

o More flexible and robust loading of configuration resources

� Inclusion and exclusion list to include/ exclude configuration
files

� Store the list of configuration resources to load in the jar-file
manifest

� Merging of spring configuration: adding more parameters to
an existing list of parameters

o Each EL4J module packages functionality with samples,
documentation and default configuration.

• Improved remoting

o Easier switching between remoting protocols (unification of remoting
protocols)

o Remote POJOs via SOAP (simpler than with basic Spring), support
for JAXB

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 16 / 320
ELCA Informatique SA, Switzerland, 2009.

o Auto-generation of RMI-wrappers for POJOs (via Interface
Enrichment)

o Provide light load-balancing via the more flexible remoting layer

o Implicit context passing over process boundaries

o Automatically deploy POJOs as EJB 2.1 beans (currently frozen)

• EL4J cockpit

o Auto-publication of the list of spring beans with their configuration
values, interceptors and other useful info

o Get a simple overview of the running threads

o Change the log4j configuration dynamically

• Exception handling

o Exception handling guidelines

o Safety facade

o More exception mappings for database accesses (additionally:
duplicate values, out of bound values)

• Convenient Maven 2.0 setup

o Well thought-through use of Maven. Hierarchical split of
configurations. Use of fine-grained projects.

o Bugfixes for maven and related tools (we have submitted about 20
patches, some of which are already included in maven)

o Own plugin to extend maven: copy tool for combined report
generation.

o Presentation about how to migrate to mvn and many detailed
information and hints

o Maven cheat sheet

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 17 / 320
ELCA Informatique SA, Switzerland, 2009.

• GUI: Light Swing framework featuring: Binding of POJOs to Swing

components, Event Bus, Docking and MDI support, Exception handling,
i18n and resource management, user preference management, simple way
to define Actions and selectively enable them, convenience code to simplify
the design of forms, ...

• JSF framework: an integration based on Seam, Facelets, Ajax4Jsf? , and
Richfaces. It does not require EJB3 (is is based on Spring).

• Daemon manager

• License manager

• XML Merger

• Extended file support (fast file observation, directory size information,
easier file search capabilities)

• Generic DAO implementation (reduce coding, improve homogenization)

• Easier support for annotation to interceptor mappings (no coding required
for basic cases)

• Ajax demo

• TCP forwarder to automatically test TCP connection failures

• Tracking the invocation graph (potentially over process boundaries),
measuring performance and generating a sequence diagram for it

• Auto-idempotency interceptor (makes your service calls idempotent)

• Better documentation

o Architecture discussions

o EL4J Datasheet

o Annotation cheat sheets

o FAQ & infos on how to solve common problems

o Documentation of each feature

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 18 / 320
ELCA Informatique SA, Switzerland, 2009.

o Tracing stack document: hints on how to get more information from
the layers of your application

The following external components are integrated in EL4J (this list is not
exhaustive, please check also the list of included jar-files):

• Spring 2.5.1 framework

• Maven 2.0, JUnit

• Commons logging, log4j

• Hibernate

• Ibatis

• Acegi security framework

• Swing application framework (from Sun)

• JWebUnit and HtmlUnit

• Eclipse BIRT

• CGLib

• XFire

• Axis

• Caucho remoting: Hessian & Burlap

• Seam

• JSF

• Struts

• JaMon

• Quartz

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 19 / 320
ELCA Informatique SA, Switzerland, 2009.

Maven 2 and installing modules

Maven 2

EL4J uses Maven 2 as its build system. For more information about maven we
refer to its website and our introductory Maven presentation. The specific EL4J
Maven plugins are documented via the standard plugin documentation support of
Maven (available on our website).

Installing modules

EL4J (the framework) and applications using it are split in modules. One needs to
install only the needed modules and dependencies of modules are automatically
taken into account. This section introduces how one can download modules. For
more details on the module abstraction, please consult the corresponding section
in the core module documentation.

For further information on getting started with the el4j modules we refer to the
convenience zip (downloadable from el4j.sf.net). Follow the steps there to set up
your environment and have a look at the demo applications.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 20 / 320
ELCA Informatique SA, Switzerland, 2009.

Documentation for module core

Purpose

The core module of EL4J contains support to split applications into separate
modules. Each module can contain code, configuration and dependencies on jar
files as well as on other modules. Dependencies are transitive. In addition, the
core module contains helpers classes for annotations, implicit context passing
and others.

edit purpose

Support for Maven 2 modules on the level of
Spring

The module support of the core module is provided in combination with the
Maven 2 build system. Maven defines the module abstraction and the core
module of EL4J makes use of it and supports it on the level of Spring.

Rationale for the module support:

• Modularity: be able to split your work in smaller sub-parts in order to reduce
complexity, to simplify separate development, to reduce size of cody by
using only what is needed.

• Provide default configuration for modules: with spring, configuration can

sometimes become complicated. We provide support for default spring
configurations to modules.

• Dependency management (1): each module lists its requirements (other

modules and jar files). These dependencies are then automatically
managed (downloaded if needed, added to the classpath, added to
deployment packages such as WAR, EAR or zip files)

• Dependency management (2): from each module only the resources of the
dependent modules are visible (you can e.g. make certain server-side jar
files invisible during the compilation of client-side code, in order to statically
ensure they are not used)

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 21 / 320
ELCA Informatique SA, Switzerland, 2009.

The module support is based on the following:

• the module abstraction of Maven 2

• the ModuleApplicationContext (a wrapper for the standard Spring
application context)

• a convention on how to organize configuration information within each
module

These three parts are described in the next sections.

Module abstraction of Maven 2

Maven 2 (http://maven.apache.org/) is a build system that gives you higher-level
build abstractions than Ant. With Maven 2 you can split your application or
framework into modules. A module can contain code and configuration. Modules
can define dependencies on jars and other modules. Dependencies on other
modules are transitive (e.g. if A requires B and B requires C, A has implicitly also
C available). Maven can package your module into a jar file.

The following picture illustrates 4 modules with dependencies:

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 22 / 320
ELCA Informatique SA, Switzerland, 2009.

For more detail on how to setup modules and for more module features, we refer
to the documentation of Maven 2.

ModuleApplicationContext

The ModuleApplicationContext is similar to the existing application contexts of
Spring (i.e. ClasspathXmlApplicationContext). It is a light wrapper around the
existing Spring application contexts.

The use of the ModuleApplicationContext is optional. We recommend it due to its
following features:

• it finds all configuration files present in the modules, even if some J2EE? -
container present them differently (e.g. WLS)

• it solves issues with the order of loading configuration files in some J2EE? -
containers

• it complements the rest of the configuration support (e.g. via the
configuration file exclusion list)

• it allows publishing all its Spring beans with their configuration (publication
is possible e.g. to JMX).

The first two features are provided in collaboration with the module support of
Maven. (A Maven plugin lists the configuration files contained in each module into
the Manifest file of modules. The ModuleApplicationContext then uses this
information.)

The reference documentation of the ModuleApplicationContext is located under
the web module.

Convention on how to organize configuration

Our convention to organize config files helps to indicate what configuration should
be automatically loaded when a module is active. One can also define different
configuration scenarios among which one needs to choose one. A sample
scenario is the choice of whether we run in a client or a server (e.g. for remoting
or security) or what data access technology to use (e.g. ibatis or hibernate). NB:
There is an easy way not to load mandatory configuration information.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 23 / 320
ELCA Informatique SA, Switzerland, 2009.

The configuration files of a module are saved under a folder '/resources'. This
'/resources' folder is divided into different subfolders:

• '/mandatory': Here are all the xml and the property files which are always

loaded into the ApplicationContext when the module is active. Choose the
bean names carefully to avoid conflicts! Ensure that all the beans that you
define in here do not disturb when present (it may sometimes be better to
use the directory '/mandatory/<module-name>' instead).

• '/mandatory/<module-name>': Contains all xml files that are necessary to

use the module as it is (standard configuration). An application that uses
this module is free to include this folder or provide a modified version.

• '/scenarios': This is the parent folder for different scenarios. It does not
contain any file, only subfolders. (e.g. a type of scenario would be
'authentication' and the scenarios of this type would be stateless or
stateful). Exactly one scenario of each type must be chosen. All possible
combinations of the scenarios have to work. The testcases of a test module
are also placed in the scenarios folder.

o '/subfolder': For each type of scenarios (see below), there is a

subfolder with a context-dependent name. One scenario of each
subfolder must be chosen in order to execute the module. Note:
Such a subfolder could contain further subfolders.

• '/optional': Here are optional xml and property files which are loaded if
requested.

• '/etc': This folder contains various files that do not suit to another
configuration folder, e.g. templates one can provide which can be helpful to
efficiently develop applications or to understand the module or images
used by the web modules.

By loading all files in '//mandatory' and one scenario of each type into the
ApplicationContext, the module has to be executable. This constraint reduces the
complexity for developers using this module.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 24 / 320
ELCA Informatique SA, Switzerland, 2009.

Examples

Two examples are provided in order to illustrate the ideas of the above structure.

Example 1

The first example illustrates how the configuration structuring of the
ModuleSecurity (old version) looks like:

• ch.elca.el4j.core.services.security:

o '/resources/mandatory/':

� security-attributes.xml

o '/resources/scenarios/':

� 'authentication/':

� stateless-authentication.xml

� stateful-authentication.xml

� 'logincontext/':

� db-logincontext.xml

� nt-logincontext.xml

� 'securityscope/':

� local-securityscope.xml

� 'distributedsecurityscope/':

� client-distributedsecurityscope.xml

� server-distributedsecurityscope.xml

� web-securityscope.xml

o '/resources/optional/':

o '/resources/etc/templates/':

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 25 / 320
ELCA Informatique SA, Switzerland, 2009.

Explanation: In security-attributes.xml , the attributes for the authorization
interceptor is defined. Since it is always needed, it is put into the '/mandatory/'
folder. There are 3 types of scenarios which the developer can choose from.
Regarding the authentication there's the choice between a stateless and a stateful
authentication. As a next thing it has to be defined which login context is chosen.
Last, the security scope has to be defined, i.e. if the environment is set up locally,
if it is distributed or if it is web based. In case the environment is distributed, we
define a subfolder since there is more than one xml file defining these beans.

Important : in case of a distributed environment, the security module needs a

remote protocol which has to be specified. Since in the distributed environment,
the security module needs the ModuleRemoting module, the remote protocol is
defined in that scope.

Example 2

A second example illustrates the Remoting And Interface Enrichment module (the
current module is slightly different):

• ch.elca.el4j.core.services.remoting:

o '/resources/mandatory/':

o '/resources/scenarios/':

� 'scope/':

� client-config.xml

� server-config.xml

� 'protocol/':

� rmi-protocol-config.xml

� hessian-protocol-config.xml

� burlap-protocol-config.xml

o '/resources/optional/':

o '/resources/etc/templates/':

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 26 / 320
ELCA Informatique SA, Switzerland, 2009.

� service-exporter-config.xml

� service-importer-config.xml

Explanation: The developer has to choose exactly one possibility of both of the
two scenarios. On the one hand, the scope has to be defined, i.e. if the
ApplicationContext is loaded on a client or on a server. Then, the protocol has to
be chosen, either rmi, burlap or hessian. Obviously, the remote protocol and its
properties has to be the same, on the client and the server. Finally the exporter
and the importer are stored under '/resources/etc/templates/' since the content of
these xml files highly depends on the specific implementation. Therefore,
commented templates are provided.

Remark: it is still possible to load both the client and the server configs in case
one would require to have both roles.

Example 3

This example illustrates the ModuleJmx:

• ch.elca.el4j.services.monitoring.jmx:

o '/resources/mandatory/':

� jmx.xml

� htmlAdapter.xml

o '/resources/scenarios/':

o '/resources/optional/':

� jmxConnector.xml

o '/resources/etc/templates/':

Explanation: Although the HTML adapter is just one option to access JMX data, it
is considered to be the most used. Putting its configuration file in the mandatory
folder loads it whenever the module is added as dependency. Users still can use
the JMX connector and remove the HTML adapter using the
ModuleApplicationContext with its ability to exclude configuration files explicitly.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 27 / 320
ELCA Informatique SA, Switzerland, 2009.

Example 4

Configuration of the statistics module (it provides convenience to use the JAMon
interceptor):

• ch.elca.el4j.services.performance.jamon:

o '/resources/mandatory/':

� jamon.xml

� jamon-jmx.xml

o '/resources/scenarios/':

o '/resources/optional/':

o '/resources/etc/templates/':

TBD: is the following still correct as we use no longer the EL4Ant? execution
units?

Explanation: The module JAMon can be used together with the JMX module or
stand-alone. While the former has a dependency on the JMX module and a JMX
proxy configured in the jamon-jmx.xml file, the latter needs a web application
container to display measurements. The dependency and the action to exclude
the jamon-jmx.xml configuration file are defined in the module's specification in
form of two different execution units.

Usage of configuration using this convention

This section presents how the security module (as defined above) could be used
in an application. Note that Maven adds the conf folder of each module
automatically to the active classpath:

String[] configurationFiles = {"classpath*:mandatory/*.xml",

"scenarios/authentication/stateless-authentication. xml",

"scenarios/logincontext/db-logincontext.xml",

"scenarios/securityscope/local-securityscope.xml"};

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 28 / 320
ELCA Informatique SA, Switzerland, 2009.

ApplicationContext m_ac = new ModuleApplicationContext(configurationFiles,

new String[]{}, false);

This code loads the files from the mandatory directory of all modules the current
module depends on (as EL4Ant? puts these modules automatically in the
CLASSPATH, the expression "classpath*:mandatory/*.xml" finds all those files).
In addition, it selects the appropriate scenarios from the security module. It
excludes the jmx-appender.xml configuration file from the configuration. In a web
context, in web.xml this could look like:

 <context-param>

 <param-name>contextConfigLocation</param-nam e>

 <param-value>

 classpath*:mandatory/*.xml,

 classpath*:mandatory/keyword/*.xml,

 classpath*:scenarios/db/raw/*.xml,

 classpath*:scenarios/dataaccess/hiberna te/*.xml,

 classpath*:scenarios/dataaccess/hiberna te/keyword/*.xml,

classpath*:optional/interception/transactionJava5An notations.xml

 </param-value>

 </context-param>

 ...

 <listener>

 <listener-class>

 ch.elca.el4j.web.context.ModuleContextL oaderListener

 </listener-class>

 </listener>

In this case it is the ModuleWebApplicationContext that has the same role as the
ModuleApplicationContext.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 29 / 320
ELCA Informatique SA, Switzerland, 2009.

Java 5 annotations for Transactions

By declaring annotations (see Java language specification) on methods the
application context of Spring is able to detect which method to intercept and what
kind of transaction to start or not. There are two annotations specially made for
transaction declaration.

• org.springframework.transaction.annotation.Transact ional

o Javadoc:

http://static.springframework.org/spring/docs/2.0.x/api/org/springfram
ework/transaction/annotation/Transactional.html

o Annotation Transactional should be used only on methods in
implementation classes.

• ch.elca.el4j.core.transaction.annotations.RollbackC onstraint

o Contains only some elements from annotation Transactional . Used

to declare rollback behavior if exception is thrown on method where
this annotation is declared. Needs to be declared in combination with
a Transactional annotation to enable transactional behavior.

Here an example of a declaration on an interface:

public interface KeywordDao {

 @RollbackConstraint(rollbackFor = { DataAccessE xception.class,

 DataIntegrityViolationException.class,

 OptimisticLockingFailureException.class })

 Keyword saveOrUpdate(Keyword keyword) throws Da taAccessException,

 DataIntegrityViolationException, Optimistic LockingFailureException;

}

And here on an implementation class:

public class KeywordDaoImpl implements KeywordDao {

 @Transactional(propagation = Propagation.REQUIR ED)

 Keyword saveOrUpdate(Keyword keyword) throws Da taAccessException,

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 30 / 320
ELCA Informatique SA, Switzerland, 2009.

 DataIntegrityViolationException, Optimistic LockingFailureException

{

 ...

 return xy;

 }

}

If the impl class above is now defined as bean in Spring application context you
just have to add the predefined Spring config file
classpath*:optional/interception/transactionJava5An notations.xml in
application context's config locations (view the config file).

If classes java.lang.RuntimeException and java.lang.Error are not defined in no-
rollback elements of annotations they will be automatically added to element

rollbackFor .

Rollback behavior can be defined on annotation Transactional too but be aware
that only the most specific annotation will be taken. It is not possible to merge
multiple Transactional annotations. The same matches to annotation
RollbackConstraint . All rollback contraints defined in annotation
RollbackConstraint will be automatically added to annotation Transactional .

Transaction propagation behaviors

Here an overview of propagation behaviors:

• required: execute within a current transaction, create a new transaction if

none exists.

• requires new: create a new transaction, suspending the current
transaction if one exists.

• supports: execute within a current transaction, execute nontransactionally

if none exists.

• not supported: execute nontransactionally, suspending the current

transaction if one exists.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 31 / 320
ELCA Informatique SA, Switzerland, 2009.

• mandatory: execute within a current transaction, throw an exception if

none exists.

• never: execute nontransactionally, throw an exception if a transaction
exists.

The default is required , which is typically the most appropriate. For more

documentation, please refer to the spring or the EJB documentation.

Programmatical transaction demarcation (start
transaction, commit, rollback in code)

First, do not use this if it is not really necessar y. Mostly you can separate
your code in methods and use transaction attributes .

You can get the bean transactionManager that is defined in file
scenarios/db/rawDatabase.xml of module-core and cast it to

org.springframework.transaction.PlatformTransaction Manager . On this class,
you can call methods directly. Please use in addition the attributes, which are
defined in module-core (attrib.transaction.*).

setRollbackOnly is not equals to setReadOnly

In this module there are attributes which name ends with ReadOnly . If this kind of
attributes are used it is still possible to commit changes. This property will be

only set in the JDBC properties to help intelligently implemented JDBC drivers to
optimize connection creation. This means that a JDBC driver can, but must not
read this property.

The setRollbackOnly method of class
org.springframework.transaction.TransactionStatus is used to garantee that
the current transaction is rolled back. This property of class TransactionStatus
can be set in code and the current TransactionStatus can be retrieved by

invoking the static method
org.springframework.transaction.interceptor.Transac tionAspectSupport.cur
rentTransactionStatus() .

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 32 / 320
ELCA Informatique SA, Switzerland, 2009.

Old support support with attributes (pre JDK 5,
now deprecated)

DeprecatedConvenienceAttributesForTransactions

Annotation/ metadata convenience

Remark: The documentation of this module was not reviewed. The

implementation of the feature may be a bit dated. Please refer also the new
Spring features for annotation configuration convenience (Chapter 7.9.2. Using
metadata-driven auto-proxying of the Spring reference manual).

The annotation convenience support is the successor of the Attribute
Convenience feature. Annotations are used to describe classes, methods or
types; for example in Java annotations can define that a method is deprecated via
the @Deprecated annotation.

With EL4J you can use annotations to enable AOP aspects.

Benefits of using this module:

• Java Annotations can enable interceptors.

• Spring AOP supports the use of Java Annotations only on methods. EL4J
supports also the use of annotations on classes.

• Inheritance of annotation is supported.

• In spring, adding support for a new attribute to spring requires to implement

a few new classes. The new classes are typically quite redundant (and they
are often implemented via cut and paste). It is the goal of the module to
alleviate this.

Linking annotations to interceptors

One configures this via the GenericMetaDataAdvisor .

Here's a sample configuration file:

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 33 / 320
ELCA Informatique SA, Switzerland, 2009.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dt d">

 <!-- Defines the Autoproxy bean which looks for each advisor in this

context -->

 <bean id="autoproxy"

class="org.springframework.aop.framework.autoproxy. DefaultAdvisorAutoProxyC

reator"/>

 <!-- Define the Advisor bean. -->

 <bean id="genericMetaDataAdvisor"

 class="ch.elca.el4j.util.metadata.GenericMe taDataAdvisor">

 <property name="interceptor">

 <ref local="exampleInterceptor"/>

 </property>

 <property name="interceptingMetaData">

 <list>

<value>ch.elca.el4j.tests.util.metadata.annotations .helper.ExampleAnnotatio

nOne</value>

 </list>

 </property>

 </bean>

 <!-- Define the interceptor to be used by the a bove defined advisor. --

>

 <bean id="exampleInterceptor"

class="ch.elca.el4j.tests.util.metadata.annotations .helper.ExampleIntercept

or">

 </bean>

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 34 / 320
ELCA Informatique SA, Switzerland, 2009.

 <!-- Define the bean which owns a method that s hould be intercepted. --

>

 <bean id="foo"

class="ch.elca.el4j.tests.util.metadata.attributes. helper.FooImpl"/>

</beans>

• The autoproxy bean looks for Advisors .

• The genericMetaDataAdvisor bean extends the
org.springframework.aop.support.DefaultPointcutAdvi sor .

o The Advice, e.g. a MethodInterceptor can be injected via the
property interceptor . It is necessary to define one, otherwise, an
exception is thrown.

o The property interceptingMetaData takes a list of meta data. The

defined interceptor will be invoked if one of these meta data is
defined at a method/class. If the parameter is not set, all meta data
defined at a method/class are collected.

• The exampleInterceptor bean extends

org.aopalliance.intercept.MethodInterceptor . It also implements
ch.elca.el4j.util.metadata.MetaDataCollectorAware which sets the
metaDataCollector of this Interceptor since the Interceptor needs to access
the meta data.

• The foo bean is a bean having a method test(int) where an
ExampleAttributeOne is declared. Therefore, a call to foo.test(int) will
invoke this Interceptor.

DeprecatedAttributeConvenienceSupport

Implementation of an interceptor
To have access to the meta data of the annotation collector, the interceptor
(specified in the configuration) has to implement the interface
ch.elca.el4j.util.metadata.MetaDataCollectorAware . Please refer to its javadoc.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 35 / 320
ELCA Informatique SA, Switzerland, 2009.

These methods returns a Collection of the found meta data or null if no meta data
was found.

/**

 * If a method containing the meta data ExampleMetaData and the parameters

 * are from typ int, check that there value is not higher as defined in

ExampleMetaData .

 * If the argument/s is/are higher, the method will proceeded with the

value defined in

 * ExampleMetaData .

 */

public Object invoke(MethodInvocation methodInvocat ion) throws Throwable {

 int[] param = null;

 // Get meta data from the interceted method

 Collection metaData =

m_metaDataCollector.getMethodOperatingMetaData(meth odInvocation);

 // Proceed meta data for the method specified (cf. Javadoc)

 if (metaData != null && metaData.size() > 0) {

 // Set the new arguments of the intercepted methods if

 // they are of type int.

 try {

 param = methodInvocation.getArguments ();

 for (Iterator iter = collection.itera tor(); iter.hasNext();)

{

 Object element = (Object) iter. next();

 if (element instanceof ExampleMet aData) {

 int value = element.value();

 for (int i=0; i < param.leng th; i++) {

 if (param[i] > value) { p aram[i] = value; }

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 36 / 320
ELCA Informatique SA, Switzerland, 2009.

 }

 }

 }

 } catch (Exception e) {

 //Do nothing with the arguments; just proceed the method

 }

 }

 // Proceed intercepted method and return its re sult

 Object retVal = null;

 try {

 // Execute the intercepted method

 retVal = methodInvocation.proceed();

 } catch (Throwable ex) {

 throw ex;

 }

 return retVal;

}

/**

 * {@inheritDoc}

 */

public void setMetaDataSource(GenericMetaDataCollec tor metaDataSource) {

 m_metaDataCollector = metaDataSource;

}

Semantics of the inheritance

Sometimes it is useful to inherit a meta data to child classes or implementations
of interfaces. In other cases, inheritance is not desired because the clearance of
the code decreases. Therefore in el4j it is configurable if, and how deep meta
data will inherited to the children. The inheritance can be configured in the
following steps.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 37 / 320
ELCA Informatique SA, Switzerland, 2009.

includePackages meta data on packages will be inherited to all classes,
interfaces and its methods in the corresponding package and all its subpackages.
à Not yet implemented

includeInterfaces = true; meta data on interfaces will be inherited to all classes
which implements the interface. The inheritance goes on to all subclasses of
these classes. Example: Class A implements Interface One. Class B extends
Class A. So inherit Class B the meta data from Interface One.

includeSuperclasses = false; the superclasses inherit its meta data to all its childs
and its methods.

includeClass = true; the class inherits its meta data to its methods.

If nothing will be configured, the following default configuration is used:
includePackages = false; includeSuperclasses = false; includeInterfaces = true;
includeClass = true;

Note: All inheritance will only be made, if the meta data type allows it (e.g. java
annnotations can be specific to use only on specific targets, for example only on
methods).

Hint: If inheritance is used, document it clearly! Otherwise the clearance of the
code can decrease strongly.

Overwriding

Child meta data overwrites parent meta data.

Example:

A class uses the annotation @ExampleAnnotationOne("Class?) and one of its
method uses @ExampleAnnotationOne("Method"). In this case a method
interceptor got the value Method to proceed.

If all options of the inheritance are used, the following points have to be
mentioned:

· Interface meta data are stronger than superclass meta data (cf.
ExampleAnnotationTwo? in the example).. · Method meta data are stronger than

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 38 / 320
ELCA Informatique SA, Switzerland, 2009.

class, interface and superclass meta data. Also when the class, interface or
superclass is in the hierarchie nearer than the meta data definition on the method
(cf. ExampleAnnotationTen? in the example).

Example

à Full configuration (everything true)

@ExampleAnnotationOne()

public interface Base {

 @ExampleAnnotationTen()

 public void inheritFromMethod(int input);

}

@ExampleAnnotationTwo()

public interface Foo extends Base{

 public void inheritFromClass(int input);

}

@ExampleAnnotationThree()

@ExampleAnnotationTen(?Not stronger than ExampleAnnotationTen

on inheritFromMethod(int) in interface Base?)

public interface FooBase {

 @ExampleAnnotationTwelve()

 public void overwrideAnnotations(int input);

}

@ExampleAnnotationSix()

@ExampleAnnotationTwo(?Not stronger than ExampleAnnotationTwo

on interface Foo?)

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 39 / 320
ELCA Informatique SA, Switzerland, 2009.

public abstract class AbstractFoo implements Foo {

@ExampleAnnotationFourteen()

public abstract void inheritFromMethod(int input);

}

@ExampleAnnotationEight()

public class FooImpl extends AbstractFoo implements FooBase {

@ExampleAnnotationSixteen()

public void inheritFromMethod(int input) {?}

public void inheritFromClass(int input) {?}

@ExampleAnnotationEight(?Overwritten?)

@ExampleAnnotationTwelve(?Overwritten?)

public void overwrideAnnotations(int input) {?}

}

method public void inheritFromClass(int input) inherit following annotations:

• @ExampleAnnotationEight()

• @ExampleAnnotationThree()

• @ExampleAnnotationTen(?Not stronger than ExampleAnnotationTen? on
inheritFromMethod(int) in interface Base?)

• @ExampleAnnotationTwo()

Same annotation type on Superclass AbstractFoo? is not inherited because the
definition on the interface Foo is stronger. The definition is stronger, also if
superclass AbstractFoo? is nearer in the hierarchie.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 40 / 320
ELCA Informatique SA, Switzerland, 2009.

• @ExampleAnnotationOne()

• @ExampleAnnotationSix()

method public void inheritFromMethod(int input) inherit following annotations:

• @ExampleAnnotationSixteen()

• @ExampleAnnotationTen()

Same annotation type on Interface FooBase? is not inherited because the
definition on the method in interface Base is stronger. The definition is stronger,
also if interface FooBase? is nearer in the hierarchie.

• @ExampleAnnotationEight()

• @ExampleAnnotationThree()

• @ExampleAnnotationTen(?Not stronger than ExampleAnnotationTen? on
inheritFromMethod(int) in interface Base?)

• @ExampleAnnotationTwo()

Same annotation type on Interface Superclass AbstractFoo? is not inherited
because the definition on the interface Foo is stronger. The definition is stronger,
also if superclass AbstractFoo? is nearer in the hierarchie.

• @ExampleAnnotationOne()

• @ExampleAnnotationSix()

method public void overwrideAnnotations(int input) inherit the same as
inheritFromClass(int input) except:

• @ExampleAnnotationEight(?Overwritten?)

Annotation on Class is overwritten by the method.

• @ExampleAnnotationTwelve(?Overwritten?)

Annotation defined by the interface FooBase? is overwritten by the method in
class FooImpl? .

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 41 / 320
ELCA Informatique SA, Switzerland, 2009.

Search service

In the search service we have implemented the Query Object pattern of Martin

Fowler. See http://www.martinfowler.com/eaaCatalog/queryObject.html for a short
introduction.

The idea is to create a query object in the presentation layer (potentially on the
client-side) and send this query object trough to the DAO layer. There should be
no need to change the query object in between these layers. With this approach
you can add search conditions on client-side without modifying service interfaces
or depending on underlying data access technology.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 42 / 320
ELCA Informatique SA, Switzerland, 2009.

In the center we have the query object class. A query object normally belongs to
to one java bean, where the java bean is a dto like the reference dto of
Reference-Database-Application (see here). In this dto we have nearby other
properties property name, description and incomplete . Properties name and
description are strings and property incomplete is a boolean.

A query object can have multiple criterias. Currenly we have three criteria
classes. The like criteria is made to do searches on strings with the SQL like
syntax. The second criteria is the comparison criteria, used to compare values.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 43 / 320
ELCA Informatique SA, Switzerland, 2009.

Currently only equals compares are implemented. The third criteria is the include
criteria, which is used to test if a given value is included in a given set.

 ReferenceService service = ...

 QueryObject query = new QueryObject(ReferenceDt o.class);

 query.addCriteria(LikeCriteria.caseInsensitive("name", "%JAVA%"));

 query.addCriteria(LikeCriteria.caseInsensitive("description",

"%WEB%"));

 query.addCriteria(ComparisonCriteria.equals("in complete", true));

 query.addCriteria(new IncludeCriteria("keywords ",

kJava.getKeyAsObject()));

 List list = service.searchReferences(query);

 ...

The code above shows the use of these three criteria objects combined with the
reference dto. In this code we execute a search on reference dto's fields name,
description , incomplete and keywords . The expected result is to receive all
reference dtos with string java (case-insensitive) somewhere in property name,
with string web (case-insensitive) somewhere in property description , where
property incomplete is set to true and where the kjava keyword is included in the
reference dto's keywords set. To get all references we could send an empty query
object (without any criterias) to the reference service.

To see how the query object can be handled with Hibernate, you can e.g. have a
look at the dao class of the Reference-Database-Application and the automatic
CriteriaTransformer class of the Hibernate module.

One can also implement this pattern on top of ibatis. However, its a much more
manual task.

How the query object could be handled with IBatis you can have a look at dao
classes and IBatis config files of the Reference-Database-Application.

Query Object Events

The query object event is used to wrap query objects. This event can be used
with Spring's application event publisher. Most application contexts are such an
application event publisher. Each singleton Sring bean that implements the

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 44 / 320
ELCA Informatique SA, Switzerland, 2009.

interface org.springframework.context.ApplicationListener will receive these
events. Prototype beans must be handeled separately.

For an example you can have a look at the (now deprecated) handling of views
(prototype beans) in module-springrcp .

Additional Features

Configuration merging via property files

The class ch.elca.el4j.core.config.ListPropertyMergeConfigure r can be used
to add items to a list on an existing configuration. Here an example.

xml-config-file.xml:

<beans>

 <bean id="configurationTest"

 class="ch.elca.el4j.core.config.ListPropert yMergeConfigurer">

 <property name="location">

 <value>myconfig/mergeable-config-file.p roperties</value>

 </property>

 </bean>

 <bean id="listTest" class="ch.elca.el4j.tests.c ore.config.ListClass">

 <property name="abcList">

 <list>

 <value>item 0</value>

 </list>

 </property>

 </bean>

</beans>

mergeable-config-file.properties:

listTest.abcList=item 2, item 3

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 45 / 320
ELCA Informatique SA, Switzerland, 2009.

If the xml-config-file.xml is loaded in an application context the property abcList
of bean listTest contains items 0, 2 and 3.

For more information have first a look at the javadoc of the spring class
org.springframework.beans.factory.config.PropertyOv errideConfigurer and
then have a look at http://el4j.sourceforge.net/framework-
modules/apidocs/ch/elca/el4j/core/config/ListPropertyMergeConfigurer.html

Further the list property merge configurer has the possability to add the new
values before or after the existing values. By default the new values (from
property file) will be appended. To prepend the new values you have to set
following property in configurer bean:

<property name="insertNewItemsBefore" value="true"/ >

Bean locator

The class ch.elca.el4j.core.beans.BeanLocator can be used to get all beans in
an application context, which are an instance of specific type (interface or class)
or have a specific bean name. It is also possible to exclude beans. For more
information have a look at http://el4j.sourceforge.net/framework-
modules/apidocs/ch/elca/el4j/core/beans/BeanLocator.html

Bean type auto proxy creator

The class ch.elca.el4j.core.aop.BeanTypeAutoProxyCreator allows autoproxying
beans by their type. It helps e.g. to use marker interfaces (such as
ServiceInterface? / DAO) that are then used more consistently than can bean
naming conventions.

Using a pointcut with a class filter would solve the problem too. It requires writing
a new static advisor that configures a RootClassFilter and that accepts a list of
interceptors. Finally, a DefaultAdvisorAutoProxyCreator is required to proxy all
classes. Using the BeanTypeAutoProxyCreator is much easier.

Exclusive bean name auto proxy creator

This auto proxy creator extends Spring's BeanNameAutoProxyCreator . It allows
setting a list of name patterns of beans to exclude. The pattern can reference a

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 46 / 320
ELCA Informatique SA, Switzerland, 2009.

distinct bean, a prefix or a bean name's suffix. If you don't declare an include
pattern (i.e. using the beanNames property), all beans will be proxied, except the
ones matching the exclude patterns. Note Exclusion patterns have higher priority.

Configuration Example

 <bean id="exclusiveNameAutoProxy"

 class="ch.elca.el4j.core.aop.ExclusiveBeanNameA utoProxyCreator">

 <property name="exclusiveBeanNames"><value>foo* </value></property>

 <property name="interceptorNames">

 <list>

 <value>shortcutInterceptor</value>

 </list>

 </property>

 </bean>

Abstract parent classes for the typesafe Enumeratio ns
Pattern (consider using the new JDK 5 enums)

An Enummeration is a type that can hold one value from a set of well defined
values. We provide 2 super classes for the immutable and typesafe enumeration
pattern: one java.lang.Comparable and the other one not comparable. For an
example, please have a look at the javadoc:

• http://el4j.sourceforge.net/framework-
modules/apidocs/ch/elca/el4j/util/codingsupport/AbstractDefaultEnum.html

• http://el4j.sourceforge.net/framework-
modules/apidocs/ch/elca/el4j/util/codingsupport/AbstractComparableEnum.
html

Reject (Precondition checking)

As described in the ExceptionHandlingGuidelines, we use the class
ch.elca.el4j.util.codingsupport.Reject for precondition checking of a method.
Have a look at the javadoc for an example: http://el4j.sourceforge.net/framework-
modules/apidocs/ch/elca/el4j/util/codingsupport/Reject.html

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 47 / 320
ELCA Informatique SA, Switzerland, 2009.

JNDI Property Configurers

The JNDI property configurers get their values form a JNDI context. Default is
java:comp/env . This can be overridden by setting the appropriate value in a
JndiConfigurationHelper , which is injected into a JNDI property configurer.

For a JndiPropertyPlaceholderConfigurer , the values are queried one after
another. There's no magic there. However, a JndiPropertyOverrideConfigurer
needs to get the whole list of properties to override. The default strategy is to use
a prefix. Default is springConfig. (notice the separating point at the end). Another
possibility is to put override properties into a distinct context that allows you
neglecting the prefixes (however you need to inject a configured
JndiConfigurationHelper and you have to set the prefix to null).

Generic configuration
See ModuleCoreGenericConfig

Pattern and Interface for the implementation of cod elists
See CodeListsEnumPattern

Generic repository

The ch.elca.el4j.services.persistence.generic.dao.Gener icRepository
interface serves as generic access to storage repositories. It is the interface for
the DDD-Book's Repository pattern. The repository pattern is similar to the DAO
pattern, but a bit more generic. This interface can be implemented in a generic
way and can be extended in case a user needs more specific methods. It is
based on an idea from the Hibernate website. A more detailed description,
illustrating how this interface can be used, can be found here.

DTO helpers

This package supports optimistic locking on the DTO level. Available is an
abstract DTO that holds a primary key generator to realize the optimistic locking
and an extended version of the abstract DTO that contains in addition the primary
key named as key in form of a string. To have the primary key generator set for
every DTO it is necessary to create DTOs by using the DTO factory, which can be
found in this package too.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 48 / 320
ELCA Informatique SA, Switzerland, 2009.

Primary key

This package contains an interface, which defines an PrimaryKeyGenerator with
a method to generate a primary key as a string. Implemented is a
UuidPrimaryKeyGenerator that always returns string primary keys with 32
characters [0-9a-z].

SQL exception translation

This package contains exceptions (subclasses of Spring's
DataAccessExceptions). These exceptions complement the exception hierarchy
of spring for duplicated values and too big values. When to throw which exception
and for which database these contigurations are vaild can be found in this
module's conf folder in file sql-error-codes.xml .

Packages that implement the core module
• ch.elca.el4j.core.**

• ch.elca.el4j.services.persistence.generic.**

• ch.elca.el4j.services.monitoring.notification.CoreNotificationHelper

• ch.elca.el4j.services.search.**

• ch.elca.el4j.util.**

• attrib.**

Notes:

• ** means all files from the current package and all sub packages.

• The full package structure of EL4J can be viewed here.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 49 / 320
ELCA Informatique SA, Switzerland, 2009.

Documentation for module
remoting

Purpose

Convenience module for spring POJO remoting: (1) allows centralized protocol
configuration , (2) simplifies protocol switching (currently between RMI,
HttpInvoker , Hessian , Burlap , Soap , Jax-WS and EJB), and (3) transparently
enriches interfaces for automatic implicit context passing .

edit purpose

Introduction

The Spring framework offers an easy way to distribute POJOs. Available
protocols are Rmi, Hessian and JAX-WS. This module provides in addition implicit
context passing. In addition, attention was payed to be able to distribute hundreds
of services with a minimum of configuration.

The general idea is to internally use Spring's implementations and offer a proxy
object to the outside. This is made on the client and on the server side (see
picture).

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 50 / 320
ELCA Informatique SA, Switzerland, 2009.

This module can also be used if you only develop th e server or client side!

Remoting modules

Currently there are six modules for remoting:

• The core remoting module with name module-remoting_core contains the
protocols RMI, HttpInvoke (of Spring), and composite protocols (see
below).

• For Hessian you have to use module-remoting_caucho .

• Our web service stack based on JAX-WS can be found in
ModuleRemotingJaxws.

• For the EJB 2.0 remoting protocol you have to use ModuleRemotingEjb

(currently not working as there was little desire and EJB 2.1 is legacy
today).

• Our web service stack based on XFire can be found in module-

remoting_xfire (deprecated).

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 51 / 320
ELCA Informatique SA, Switzerland, 2009.

• The old web service stack (based on Axis 1) can be found in=module-
remoting_soap= (deprecated).

In addition, there exists a composite protocol (it uses the composite pattern) that
supports load balancing:

• The load balancing protocol can be found in module-remoting_core .

How to use

Basic configuration

Recommended configuration file organization

Typically we have three configuration files. One for the server, one for the client
and one which is shared between server and client. We present first the file that is
shared between the server and the client, the x-protocol-config.xml . The x
stands for the protocol such as rmi or hessian .

x-protocol-config.xml

This file contains the following for the protocol rmi :

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dt d">

<beans>

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 52 / 320
ELCA Informatique SA, Switzerland, 2009.

 <bean id="remoteProtocol"

class="ch.elca.el4j.services.remoting.protocol.Rmi" >

 <property name="serviceHost">

 <value>localhost</value>

 </property>

 <property name="servicePort">

 <value>1099</value>

 </property>

 <property name="implicitContextPassingRegis try">

 <ref local="implicitContextPassingRegis try" />

 </property>

 </bean>

 <bean id="implicitContextPassingRegistry"

class="ch.elca.el4j.tests.remoting.service.TestImpl icitContextPassingRegist

ry" />

</beans>

In this configuration file, we have only two beans defined. One bean for the
remoting protocol and one for implicit context passing registry. Each bean that
defines a remote protocol needs protocol-specific properties. In addition a
reference to a class, which implements the interface
ImplicitContextPassingRegistry is necessary, if you want to use the implicit
context passing feature.

It is possible to have many beans that define a remoting protocol. In the example
above it is the rmi remoting protocol. This requires the serviceHost , where the
service is running and it also needs to know the servicePort . For the remoting
protocol rmi , these two properties are mandatory. The other predefined protocols
(hessian and http-invoker) need additionally the property contextPath that
defines in which webserver context the service is running.

x-client-config.xml

This file contains the following for the protocol rmi when we want to get access to
the remote calculator bean.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 53 / 320
ELCA Informatique SA, Switzerland, 2009.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dt d">

<beans>

 <import resource="rmi-protocol-config.xml"/>

 <bean id="calculator"

class="ch.elca.el4j.services.remoting.RemotingProxy FactoryBean">

 <property name="remoteProtocol">

 <ref bean="remoteProtocol" />

 </property>

 <property name="serviceInterface">

 <value>ch.elca.el4j.tests.remoting.serv ice.Calculator</value>

 </property>

 </bean>

</beans>

The first element imports the previous discussed x-protocol-config.xml file. In

this way, we can set the property remoteProtocol to a bean that is defined in the
file x-protocol-config.xml . The second property serviceInterface has to be the

business interface. These two properties are mandatory.

x-server-config.xml

This file contains the following for the protocol rmi :

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dt d">

<beans>

 <import resource="rmi-protocol-config.xml"/>

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 54 / 320
ELCA Informatique SA, Switzerland, 2009.

 <bean id="calculatorExporter"

class="ch.elca.el4j.services.remoting.RemotingServi ceExporter">

 <property name="remoteProtocol">

 <ref bean="remoteProtocol" />

 </property>

 <property name="serviceInterface">

 <value>ch.elca.el4j.tests.remoting.serv ice.Calculator</value>

 </property>

 <property name="service">

 <idref bean="calculatorImpl" />

 </property>

 </bean>

 <bean id="calculatorImpl"

class="ch.elca.el4j.tests.remoting.service.impl.Cal culatorImpl" />

</beans>

The first element imports also the x-protocol-config.xml file, like the client config

does. The second property is also the serviceInterface . The difference to the
client configuration is that the server configuration needs a reference to the
service implementation. The bean for this implementation can be found as second
bean definition in this configuration file. These three properties are mandatory.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 55 / 320
ELCA Informatique SA, Switzerland, 2009.

Configuration summary

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 56 / 320
ELCA Informatique SA, Switzerland, 2009.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 57 / 320
ELCA Informatique SA, Switzerland, 2009.

This picture describs the configuration information needed. On top you can find
the base class AbstractRemotingBase that shares the common part between client
(RemotingProxyFactoryBean) and server side (RemotingServiceExporter). This base

class always needs to know the service interface and it also needs a reference to
a class that extends AbstractRemotingProtocol such as Rmi or Hessian .

While the class RemotingProxyFactoryBean does not need something more, the
class RemotingServiceExporter needs additionally to the properties from the

extended class a reference to the implemented service . The service must
naturally implement the serviceInterface .

The property serviceName of the base class is optional. It only must be set
manually, if the given serviceInterface is used twice or more on the same server.
If the property serviceName is not set, what is normally the case, it will be
generated out of the name of the serviceInterface and the suffix .remoteservice .
The suffix .remoteservice is needed in webservers to be able to know which
requests have to be redirected to the DispatcherServlet from Spring. More details
follows below.

The class AbstractRemotingProtocol can have a reference to a class that
implements the interface ImplicitContextPassingRegistry. If such a reference

exist, the implicit context passing will be enabled.

The abstract class AbstractInetSocketAddressProtocol has two required

properties. The first is the serviceHost which must be the host and the second is
the servicePort which is the port, where the service is running. Rmi directly

extends this class.

Protocols that are running in a webserver must additionally know in which
contextPath they are running. This is solved by the abstract class
AbstractInetSocketAddressWebProtocol. This property contextPath is mandatory.

Inside the webserver, the mapping of services is done automatically by this
abstract class. There is one class that directly extends this abstract class, the
Hessian protocol.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 58 / 320
ELCA Informatique SA, Switzerland, 2009.

How to use the Rmi protocol

The introduction of the remoting module in the previous section was made with
RMI. So please refer there for general information about remoting with RMI. For
additional constraints and implementation details about the RMI remoting, please
refer to the last subchapter of this section.

Important points:

• If on host serviceHost no rmi registry is running on port servicePort , Spring
will automatically start a rmi registry.

• The server side must naturally be started before the client side.

How to use the Hessian protocol

The usage of the Hessian protocol on the client side is the same as the Rmi
protocol.

The server side must be started in a webserver. To realize this, take the following
steps.

Create a web-deployable module

With Maven you can create a module that can be deployed on a webserver such
as tomcat. First you have to have the plugin for tomcat installed. This could look
like the following snipet:

TBD: adapt the following to Maven

 <plugin name="j2ee-web-tomcat">

 <attribute name="j2ee-web.container" value= "tomcat"/>

 <attribute name="j2ee-web.mode" value="dire ctory"/>

 <attribute name="j2ee-web.home" value="../. ./external-

tools/tomcat"/>

 <attribute name="j2ee-web.port" value="8080 "/>

 <attribute name="j2ee-web.manager.username" value="admin"/>

 <attribute name="j2ee-web.manager.password" value="password"/>

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 59 / 320
ELCA Informatique SA, Switzerland, 2009.

 <attribute name="j2ee-war.unpacked" value=" true"/>

 </plugin>

It is highly recommended to define the attribute j2ee-web.home relativly to
your EL4J project to have the file in your CVS/SVN operating system
independent.

After you have added this plugin you can define your module with the following
lines:

 <module name="mymodulename" path="here/is/my/mo dule">

 ...

 <attribute name="runtime.runnable" value="t rue"/>

 <attribute name="j2ee.war.application"/>

 <attribute name="runtime.command.creator" v alue="

runtime.command.creator.web"/>

 ...

 </module>

Of course you have to add at least a dependency to the module-remoting_caucho
in this module .

Now you can deploy the module and start tomcat via the corresponding ant task,
generated by Maven.

Register Spring's DispatcherServlet

To register a servlet you have to create a folder webapp in your newly created
module and in this folder a folder with name WEB-INF. Now you have to create a
file with name web.xml and the following content:

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-ins tance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/ j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"

 version="2.4">

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 60 / 320
ELCA Informatique SA, Switzerland, 2009.

 <servlet>

 <servlet-name>remote</servlet-name>

 <servlet-class>

 org.springframework.web.servlet.Dispatc herServlet

 </servlet-class>

 <load-on-startup>1</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>remote</servlet-name>

 <url-pattern>*.remoteservice</url-pattern>

 </servlet-mapping>

</web-app>

If you already have a web.xml file, just add the two elements servlet and

servlet-mapping . If you have got already a servlet with name remote you have to
change this name in your newly added two elements servlet and servlet-

mapping .

Declarations:

• The element load-on-startup tells the webserver in which order he has to

load the servlets. The servlet with the lowest number will be loaded as first
and so on. In our example we have only one servlet, so it does not matter
which number it has.

• The element url-pattern tells the webserver that every request, whose

request path ends with .remoteservice , should be sent to the servlet with
name remote .

Loading Spring configuration file(s)

Internally, the DispatcherServlet is looking for the xml file that is in the WEB-INF
folder and whose name begins with the name of the servlet and ends with -
servlet.xml . If you have not changed the name of the servlet, the
DispatcherServlet will look for the file remote-servlet.xml . We create now such a
file. The content could look like the following:

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 61 / 320
ELCA Informatique SA, Switzerland, 2009.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dt d">

<beans>

 <import resource="hessian-protocol-config.xml"/ >

 <bean id="calculatorExporter"

class="ch.elca.el4j.services.remoting.RemotingServi ceExporter">

 <property name="remoteProtocol">

 <ref bean="remoteProtocol" />

 </property>

 <property name="serviceInterface">

 <value>ch.elca.el4j.tests.remoting.serv ice.Calculator</value>

 </property>

 <property name="service">

 <ref local="calculatorImpl" />

 </property>

 </bean>

 <bean id="calculatorImpl"

class="ch.elca.el4j.tests.remoting.service.impl.Cal culatorImpl" />

</beans>

The content of this file is exactly the same as for the Rmi protocol except that the
import points to another file. This similarity is by choice, it makes it trivial to switch
between different protocols.

Now we have to copy the file hessian-protocol-config.xml that is already
configured by the client into the folder WEB-INF. The content of file hessian-

protocol-config.xml could look like the following:

<?xml version="1.0" encoding="ISO-8859-1"?>

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 62 / 320
ELCA Informatique SA, Switzerland, 2009.

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dt d">

<beans>

 <bean id="remoteProtocol"

class="ch.elca.el4j.services.remoting.protocol.Hess ian">

 <property name="serviceHost">

 <value>yourserver</value>

 </property>

 <property name="servicePort">

 <value>8080</value>

 </property>

 <property name="contextPath">

 <value>yourcontextpath</value>

 </property>

 <property name="implicitContextPassingRegis try">

 <ref local="implicitContextPassingRegis try" />

 </property>

 </bean>

 <bean id="implicitContextPassingRegistry"

class="ch.elca.el4j.core.contextpassing.DefaultImpl icitContextPassingRegist

ry" />

</beans>

Declarations:

• The name of the bean that defines the remoting protocol does not have to

be remoteProtocol . But when the name of it will be changed, all xml files
that import this xml file have to be adapted.

Needed module classes and libraries

All needed module classes and libraries will be deployed if you execute the
deploy ant target of the created module. If you execute this target a second time,
the module will be redeployed.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 63 / 320
ELCA Informatique SA, Switzerland, 2009.

Reloading context

Normally the reloading of the context will be automatically done, if you are
executing the ant target of the module. But sometimes it can be helpful (e.g. if you
want to test something) to reload the context manually. If you are using Tomcat,
you can reload your context by using the Tomcat Manager

(http://serviceHost:servicePort/manager/html). You have to login with your
account you had created during the installation of Tomcat. By default this is admin
for the username and password for the password. Now you can click on the
corresponding link of your context to reload it.

Test your service and find logging information

Now we are ready to test the service. Open a web browser and enter the address,
where the service should be.

Example:
Property Value

serviceHost myserver

servicePort 8080

contextPath remotetest

serviceInterface ch.elca.el4j.tests.remoting.service.Calculator

For the values above the address would be the following:
http://myserver:8080/remotetest/ch.elca.el4j.tests.remoting.service.Calculator.rem
oteservice

The result of this GET request should not be a The requested resource is not

available (HTTP status 404). You should receive an Internal error (HTTP
status 500). If you can see a stack trace, you should see that there is a message
like HessianServiceExporter only supports POST requests . If you receive
something like that, your service might be running correctly.

Whether it runs correctly or not you can have a look at the console output of your
webserver. If you are using Tomcat normally you will find the stdout.log in folder
logs of your Tomcat installation. The file stdout.log will be deleted on each
restart of Tomcat.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 64 / 320
ELCA Informatique SA, Switzerland, 2009.

How to use the HttpInvoker protocol
The usage of the HttpInvoker protocol is exactly the same as for the Hessian and
Burlap protocols. Just read the Hessian subchapter and replace the word Hessian
with HttpInvoker .

How to use the web service protocol based on JAX-WS
2.1
The EJB protocol support is available in the ModuleRemotingJaxws.

How to use the EJB protocol
The EJB protocol support is available in the ModuleRemotingEjb.

How to use the Load Balancing composite protocol
The load balancing protocol is a so-called composite protocol. It applies the
Composite Design Pattern and thus allows the user to compose several of the
atomic protocols (i.e., a non-composite protocol such as RMI) into this composite
protocol. To the outside, it behaves like an atomic protocol. Note that the load
balancing protocol is only used on the client side of a (remote) invocation and
requires no modifications to existing remoting protocols.

The following figure shows an overview of the load balancing protocol usage. In
this example, load balancing composes three (atomic) protocols, however, any
number of protocols are supported. Components in red (or in dark color) are part
of load balancing, the others are part of other remoting protocols or business
objects.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 65 / 320
ELCA Informatique SA, Switzerland, 2009.

The bean class LoadBalancingConfiguration groups the configuration parameters
that are supported by load balancing. As an example, consider the following
configuration, which defines the client side of the invocation. It balances load
between 3 RMI-servers.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

 "http://www.springframework.org/dtd/spring-beans .dtd">

<beans>

 <bean id="businessObj"

 class="ch.elca.el4j.services.remoting.Remotin gProxyFactoryBean">

 <property name="remoteProtocol">

 <ref bean="loadBalancingProtocol" />

 </property>

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 66 / 320
ELCA Informatique SA, Switzerland, 2009.

 <property name="serviceInterface">

 <value>

 myServiceInterface

 </value>

 </property>

 </bean>

 <bean id="loadBalancingProtocol"

class="ch.elca.el4j.services.remoting.protocol.load balancing.protocol.LoadB

alancingProtocol">

 <property name="protocolSpecificConfiguration ">

 <ref bean="loadBalancingProtocolConfigurat ion" />

 </property>

 </bean>

 <bean id="loadBalancingProtocolConfiguration"

class="ch.elca.el4j.services.remoting.protocol.load balancing.protocol.LoadB

alancingProtocolConfiguration">

 <property name="protocols">

 <list>

 <ref bean="rmiProtocol1"/>

 <ref bean="rmiProtocol2"/>

 <ref bean="rmiProtocol3"/>

 </list>

 </property>

 <property name="policy">

 <ref bean="randomPolicy" />

 </property>

 </bean>

 <bean id="rmiProtocol1"

class="ch.elca.el4j.services.remoting.protocol.Rmi" >

 <property name="serviceHost">

 <value>localhost</value>

 </property>

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 67 / 320
ELCA Informatique SA, Switzerland, 2009.

 <property name="servicePort">

 <value>8092</value>

 </property>

 </bean>

 <bean id="rmiProtocol2"

class="ch.elca.el4j.services.remoting.protocol.Rmi" >

 <property name="serviceHost">

 <value>localhost</value>

 </property>

 <property name="servicePort">

 <value>8094</value>

 </property>

 </bean>

 <bean id="rmiProtocol3"

class="ch.elca.el4j.services.remoting.protocol.Rmi" >

 <property name="serviceHost">

 <value>localhost</value>

 </property>

 <property name="servicePort">

 <value>8099</value>

 </property>

 </bean>

</beans>

Although nested load balancing protocols are possible, their usage is
discouraged.

Handling Connection Failures
The load balancing protocol attempts to establish an initial connection to a
particular server. If this connection attempt fails, it will ask for the next server from
the policy bean and attempt to connect to this server. It repeats this behavior until
it succeeds to connect, or no more servers are available. In the latter case, it
throws a

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 68 / 320
ELCA Informatique SA, Switzerland, 2009.

ch.elca.el4j.services.remoting.protocol.loadbalanci ng.NoProtocolAvailableRT

Exception .

Once a protocol has been initialized and a connection established, it behaves as
it would without load balancing. Thus, connection failures are notified to the user.

Retries after a failure: this load-balancing meta-protocol does not do automatic

retries after a connection failure. In case you would like to have retries, have a
look e.g. at the auto-idempotency module that has a retry-interceptor for this
purpose. The semantics of the load-balancing meta-protocol is similar to the one
of the jboss clustering support.

Policies
The load balancing protocol comes with a set of predefined policies. These
policies govern the sequence in which protocol instances are invoked. Before
every method invocation, the load balancing protocol retrieves the next protocol
instance to invoke from the installed policy instance.

To minimize overhead, the load balancing protocol caches protocol instances and
reuses these cached instances rather than recreating them every time.

Assume that p_i denotes policy instance p_i and that load balancing composes
the protocol set {p_1, p_2, p_3}. For instance, p_i could denote the protocol RMI
connecting to server running on xyz.elca.ch:7000. The following policies are
currently supported:

• random: Each new call goes to a randomly found protocol instance.

• roundrobin: There is an ordered list of servers through which the load

balancer loops, distributing the invocations over all servers. Example: p_1 -
> p_2 -> p_3 -> p_1 -> p_2 -> ...

• redirectuponfailure: This policy is similar to the round robin one. However,

the server is only changed if a call fails. Therefore, the same server is used
until an error occurs. Example: p_1 -> p_1 -> p_1 ---"p1 fails"---> p_2 ->
p_2 -> ...

The random policy removes protocols when a connection failure occurs. The
roundrobin and redirectuponfailure policies do not exclude protocols that cause a

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 69 / 320
ELCA Informatique SA, Switzerland, 2009.

connection failure, but switch to the next protocol. This behavior is well suited to
handle transient network failures. With a transient failure, the server is still up and
running and there is no reason not to reconnect to this server again at a later
point in time. With the random policy, such servers are excluded. Indeed, with
random policy, the load balancing protocol may (with low probability) repeatedly
try to connect to the same, temporarily unavailable, server. Thus, these "failed"
servers need to be excluded. Consequently, an unstable network may lead to the
case in which servers are no longer considered although they may be up and
running. It is the application developers responsibility to pick a policy suitable to
his/her application, or to plugin his/her own policy.

The installation of an appropriate policy can be done using attribute policy . The
default policy is random.

Defining a customary policy

If the need arises applications can install their own policies to work with load
balancing. All policies must extend class
ch.elca.el4j.services.remoting.protocol.loadbalanci ng.protocol.policy.Abstr

actPolicy . The policy implementation receives a notification every time a failure
occurs with a particular atomic protocol.

Limitations
Currently, the load balancing plugin has only been tested with the RMI protocol.
Although the tests with other protocols have not yet been performed, there is no
reason it should not work with other protocols. Indeed, the load balancing protocol
makes no assumption on the protocols other than the ones used also by the
instantiating factory.

Further reading
Please see the load balancing test cases in module-remoting-tests-apps for
further examples of how to use the load balancing protocol. Also, please refer to
the documentation of the corresponding atomic protocols to learn how to use
these.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 70 / 320
ELCA Informatique SA, Switzerland, 2009.

Introduction to implicit context passing

The implicit context allows passing context data along with normal method calls.
The term implicit context refers to any kind of object that should be included in
a call. It is included in a service call in the calling direction, not in the response.
Therefore changes made on a server do not affect the client's implicit context.

In practice, there are different ways to implement implicit context passing. The
easiest way is if the used communication protocol supports it: one can simply add
the implicit context to the remote invocations. However, in the Java context, many
protocols do not directly support implicit context passing. Our solution is to add
the implicit context in the form of a Map as the last argument of methods. Behind
the existing interface, we add transparently a shadow interface that has the
additional parameter added. Please refer to the internal design section for more
details on this.

Implicit context passing is entirely optional, it can be enabled by defining a context
passing registry on the level of the protocol definition.

A service that wants to have some implicit context passed, must implement the
interface ch.elca.el4j.remoting.contextpassing.ImplicitContex tPasser . This
passer has two responsibilities: to get the data to pass along with the call on the
client side, and to push the received data to the service before the real invocation
on the server side. One instance of this context passer has to be registered to an
ch.elca.el4j.remoting.contextpassing.ImplicitContex tPassingRegistry on the
client side and a second to the registry on the server side. Before a method call is
made, the implicit context to include in that call is assembled by the client's
registry. Every registered AbstractImplicitContextPasser is called to deliver its
data. The same thing happens on the server side when the remote call is
received, every passer is called by the registry to push its data to the service. This
is done completely transparent for the service and the client, if the configuration is
properly set up.

On server and client side the configuration could look like the following (only a

part from the bean configuration file):

<bean id="implicitContextPassingRegistry"

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 71 / 320
ELCA Informatique SA, Switzerland, 2009.

class="ch.elca.el4j.core.contextpassing.DefaultImpl icitContextPassingRegist

ry"/>

<bean id="authenticationServiceContextPasser"

 class="ch.elca.myproject.MyImplicitContextP asserOne">

 <property name="implicitContextPassingRegistry" >

 <ref local="implicitContextPassingRegistry" />

 </property>

</bean>

<bean id="authenticationServiceContextPasser"

 class="ch.elca.myproject.MyImplicitContextP asserTwo">

 <property name="implicitContextPassingRegistry" >

 <ref local="implicitContextPassingRegistry" />

 </property>

</bean>

In this example we have two classes that extend the class
AbstractImplicitContextPasser . On the client side, the
DefaultImplicitContextPassingRegistry gets the Serializable object from both
AbstractImplicitContextPasser and on server side the
DefaultImplicitContextPassingRegistry puts the Serializable object to the
AbstractImplicitContextPasser where it has been received the object.

Use of ThreadLocal

It is strictly forbidden to use ThreadLocal in combination with implicit context
passing! The retry interceptor uses a new child thread for the actual execution of
the invoked method. In this child thread, all context defined using a ThreadLocal in
the parent thread will not be available. Therefore, implicit context passing does
not work when a ThreadLocal is used . With an InheritableThreadLocal (which

subclasses ThreadLocal), however, implicit context passing works as the child
thread receives initial values from it's parent thread if InheritableThreadLocal is
used. Thus, it is strongly recommended to use InheritableThreadLocal and not
ThreadLocal .

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 72 / 320
ELCA Informatique SA, Switzerland, 2009.

Benchmark

The module module-remoting-demos contains a benchmark for various

remoting protocols. The benchmark compares each protocol with and without
context passing. With context passing the RemotingProxyFactoryBean and the
RemotingServiceExporter from this module will be used. Without context passing
the classes from Spring will be used directly. By the way, these Spring classes
are used behind the scene of this module, so the results of benchmarks without
context information should be faster than benchmarks with context information.

The following is the result of the benchmark running on the Laptop of POS, an
Intel T2400, Dual core with 1.83 Ghz and 2 GB of memory:

 -- ------------------------

 | *Name of test* | *Method 1 [ms]* | *Method 2 [ms]*

| *Method 3 [ms]* | *Method 4 [ms]* |

 -- ------------------------

 | rmiWithoutContextCalculator | 1.084 | 1.622

| 4.991 | 0.419 |

 -- ------------------------

 | rmiWithContextCalculator | 1.119 | 1.875

| 5.394 | 0.478 |

 -- ------------------------

 | hessianWithoutContextCalculator | 0.678 | 1.637

| 24.398 | 0.847 |

 -- ------------------------

 | hessianWithContextCalculator | 1.081 | 2.384

| 25.454 | 1.075 |

 -- ------------------------

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 73 / 320
ELCA Informatique SA, Switzerland, 2009.

 | httpInvokerWithoutContextCalculator | 1.353 | 3.031

| 6.931 | 1.3 |

 -- ------------------------

 | httpInvokerWithContextCalculator | 1.381 | 3.294

| 6.65 | 1.35 |

 -- ------------------------

Legend: Method 1: double getArea(double a, d ouble b)

 Method 2: void throwMeAnException() throws

CalculatorException

 Method 3: int countNumberOfUppercase Letters(String

textOfSize60kB)

 Method 4: ComplexNumber add(ComplexN umber cn1,ComplexNumber

cn2)

To execute the benchmark on your machine you can run the demo yourself.

Remoting semantics/ Quality of service of the remot ing

Cardinality between client using the remoting and s ervants
providing implementations

This section discusses how the clients and client requests are mapped to servant
objects and how servant objects need to be implemented. The servant object is
the object that runs on the server-side of the remoting and implements the real
functionality. Basically we allow either a many to 1 mapping of clients to servant
objects (Singleton in table below) and a 1 to 1 mapping (Client-activated in table
below). A servant object remoted as a Singleton can optionally be pooled on the
server side (this could then be extended to something similar to the stateless
session bean semantics of EJB). In order to set this up, please refer to the spring
reference manual. The semantics of the EJB remoting is slightly different. It is
required that you understand what you are doing when switching between EJB
and other remoting protocols.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 74 / 320
ELCA Informatique SA, Switzerland, 2009.

Singleton objects that are not pooled need either be reentrant or be properly
synchronized (some use the term "reentrant" in a way that these 2 things are
equivalent (as a properly synchronized class is naively reentrant with this
signification of reentrant)).

The following table summarizes this. On the left hand side, it shows the desired
semantics and how the servant POJOs are implemented, the right hand side
indicates how this semantics is realized with each protocol:

Desired semantics /implementation Rmi Hessian Burlap Soap EJB

POJO is reentrant Standard use

synchronized By using an interceptor in or
synchronizing in code

N/A Singleton

POJO is not
reentrant

pooled By using spring's pooling target source
(see spring doc)

Stateless

Client-activated TODO: Is currently not implemented. Statefull

What happens when there is a timeout or another pro blem
during remoting

The following document describes what happens in more details. It has been
contributed by VISA{MSM} from the Orchestra project. To understand their
context: they use this EL4J remoting to communicate between processes and
other projects. They run their code within the ModuleDaemonManager (this
explains some of their behavior). The exceptions shown in section 2.5 are thrown
because creating 1200 tickets takes about 20 minutes (and 20 minutes is bigger
than the timeout value). Thank you, Marc! RemoteServiceBehaviour_10.doc.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 75 / 320
ELCA Informatique SA, Switzerland, 2009.

Internal design

Sequences

Sequence diagramm from client side

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 76 / 320
ELCA Informatique SA, Switzerland, 2009.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 77 / 320
ELCA Informatique SA, Switzerland, 2009.

Sequence diagramm from server side

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 78 / 320
ELCA Informatique SA, Switzerland, 2009.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 79 / 320
ELCA Informatique SA, Switzerland, 2009.

Creating a new interface during runtime

In this module, the implicit context can optionally be passed from client to server

without changing the existing code. This is done by creating a new interface
during runtime that slightly changes, decorates the service existing interface. But

it is important that the created interface has no dependency to the service
interface and vice versa. This enrichment is done with the help of the BCEL (Byte
Code Engineering Library).

All classes for the interface enrichment are in package
ch.elca.el4j.util.interfaceenrichment in the module-core . The class

InterfaceEnricher offers methods to create such a new interface. One method is
the createShadowInterfaceAndLoadItDirectly with parameters serviceInterface ,
interfaceEnricher and classLoader . The serviceInterface is the interface which
has to be enriched, the interfaceEnricher is a class which implements the
interface EnrichmentDecorator and the classLoader is the ClassLoader where the
new class has to be loaded. The usage of this classes is explained in its javadoc.

By default, we do the interface enrichment during runtime, if possible. This uses
the same mechanism as the CGLIB. The advantage of this is that it can be made
transparent in most cases. In contexts where runtime enrichment is not
applicable, the interface enrichment also supports interface enrichment during
build time.

Internal handling of the RMI protocol (in spring an d EL4J)

Perhaps you have recognized that the business interface does not extend the
class java.rmi.Remote and the methods do not have to throw a
java.rmi.RemoteException . This is normally mandatory to be able to use the RMI
protocol. Additionally, prior to Java 1.5 you have to run the RMIC (RMI-
Compiler) during build time for the service that implements the service interface.

If you have a service interface that fulfills the RMI requirements and you are using
these classes in combination with the RmiProxyFactoryBean and
RmiServiceExporter , the real RMI service will be exported. That means that

everybody can access the service, whether it uses springs or EL4J's remoting
facility or not.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 80 / 320
ELCA Informatique SA, Switzerland, 2009.

If you have got a service interface that does not extend java.rmi.Remote and does
not throw a java.rmi.RemoteException on each method, Spring will not publish the
service directly via RMI. Spring uses Java's reflection to send calls through a
generic invoke method. In the framework it has a RMI invoker , which tunnels
every request through the method invoke . The RMI invoker extends
java.rmi.Remote and the method invoke throws a java.rmi.RemoteException . The
Stub and skeleton are already prebuild for this RMI invoker . (This is the default
spring semantics.)

EL4J adds some more flexibility: via the interface decoration, it can wrap a non-
RMI-conformant interface with a conformant interface. This support is again
transparent for the user. This work similarly in the case of EJB. In the current
implementation, this generates a double-indirection of interfaces. The last
interface is visible to RMI, the first interface is visible to the user.

Business Interface --> Shadow Interface 1 (RMI-conformant) --> Shadow
interface 2 (RMI-conformant and with implicit context passing)

To be done

The module should be able to export a rmi service with its service interface, but
the service interface should not have any dependencies to RMI. To solve this
problem we could create an ant task to call the interface enricher and let him
generate and save the generated interface to disk. The interface enricher can
already do that. So we could be able to wrap the service implementation with a
class, which implements the generated service interface and could redirect
method invocations. At the end we could also use the rmic to create stub and
skeleton for Java 1.4 and below.

Related frameworks

extrmi

A further framework which also pass the context transparently is the extrmi . It can
be found at sourceforge http://sourceforge.net/projects/wenbozhu/

• In this solution the implicit context is passed by using java.lang.reflect .

So this is the same way like this module does it in the worst case. Why

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 81 / 320
ELCA Informatique SA, Switzerland, 2009.

worst case? If the remoting is done by reflection the server side published
interface is always the same. In a first way this sounds very good, but if you
would like to access the server without using the given client stub you have
not got any chance.

• Another negative point is that this framework does not help you to simplify
switching between remoting protocols. You always have to adapt the
business classes to the needs of the used remoting protocol.

Article reference: http://www.javaworld.com/javaworld/jw-04-2005/jw-0404-
rmi_p.html

Javaworld 2005 idea

http://www.javaworld.com/javaworld/jw-03-2005/jw-0314-usersession_p.html

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 82 / 320
ELCA Informatique SA, Switzerland, 2009.

Documentation for module Jax-WS
remoting
JAX-WS (Java API for XML Web Services) is the successor of the JAX-RPC API.
It is part of the Java EE 5 API and its reference implementation can be found at
https://jax-ws.dev.java.net/ .

Purpose

Convenience module to use and provide Jax-WS web services. This module
extends the ModuleRemoting, i.e. supports the same remoting features and
allows switching from one of the other protocols to Jax-WS and vice versa.

edit purpose

How to use

Adaptations for Java 6
For the impatient: Download jaxb-api.jar and copy it into
C:\jdk1.6.0_12\jre\lib\endorsed (adapt path to your JDK).

JAX-WS 2.1 uses JAXB 2.1 which conflicts with the version 2.0 included in
JavaSE 6. Migrating JAXB 2.0 to JavaSE 6 section 7.1.2 explains how to solve
this problem. Attention : If files are copied to lib/endorsed, check that the

filenames do not contain version numbers (e.g. there must be jaxb-api.jar, not
jaxb-api-2.1.jar).

Notes on JAX-WS server deployment

JaxWsSpringServerDeploymentNotes

Two usage scenarios and their differences

The probably most important to understand this documentation is that one should
note that there are basically two different usage scenarios when talking about
JAX-WS. Even tough both of them have some similarities in their configuration,
the underlying scope is completely different.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 83 / 320
ELCA Informatique SA, Switzerland, 2009.

Client only (pure consuming of a provided webservic e)

In this scenario, the intention is to write a client application for a given, provided
webservice which is perhaps not even under our control. For this target
webservice, a WSDL must be provided and accessible over http. Using the
wsimport tool, we generate client java classes from the WSDL file.

Server and Client (create a new webservice and use id)

In this scenario, the intention is to write a webservice by ourselves – and also use
it. To make things a little more (or a little less) understandable, this goal can be
achieved in two different ways:

• Method 1 Write java code (interfaces and implementation) with

corresponding JAX-WS annotations (@WebService), then automatically
create a WSDL using the wsgen tool and finally generate client java
classes from this WSDL as in the Client only scenario. This is especially
useful if the source code of the server is (or should) not be available to
clients.

• Method 2 Write java code (interfaces and implementation) with

corresponding JAX-WS annotations and access the service over the java
service interface from the server tier using the server interfaces specified
before (remoting method). If you control both the client and the server, you
typically don't want to work with generated classes but use the ones that
you have written (service interfaces, data structures and so on). In this
case we choose the remoting mode that uses the JAX-WS support
provided by Spring.

In the following subsections, this icon indicates a reference to code / modules

inside the EL4J framework. For a better understanding of JAX-WS, we encourage
you to look at the referenced code samples.

But before we can describe the two scenarios in more detail, we have to take a
look at the common configuration parts for both potential usage scenarios.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 84 / 320
ELCA Informatique SA, Switzerland, 2009.

Common configuration files

The protocol configuration file (jaxws-protocol-config.xml)

There are two JAX-WS protocols available (both with and without implicit context
passing):

Jaxws and JaxwsSoapHeaderContextPassing

Protocols to be used whenever code is generated using wsgen and / or wsimport
(Scenario Client only or Scenario Server & Client, Method 1).

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema /beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-ins tance"

 xsi:schemaLocation="http://www.springframework. org/schema/beans

http://www.springframework.org/schema/beans/spring- beans-2.0.xsd">

 <!-- JAX-WS Soap Protocol -->

 <bean id="jaxwsProtocol"

class="ch.elca.el4j.services.remoting.protocol.Jaxw sSoapHeaderContextPassin

g">

 <!--

 Properties "serviceHost" and "servicePo rt" are ignored.

 They have to be specified in the config uration section of

maven-jaxws-plugin.

 -->

 <property name="serviceHost">

 <value>ignored</value>

 </property>

 <property name="servicePort">

 <value>0</value>

 </property>

 <property name="contextPath">

 <value>yourcontextpath</value>

 </property>

 <property name="implicitContextPassingRegis try">

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 85 / 320
ELCA Informatique SA, Switzerland, 2009.

 <ref local="jaxwsImplicitContextPassing Registry" />

 </property>

 <property name="contextPassingContext">

 <ref bean="jaxwsContextPassingContext" />

 </property>

 </bean>

 <bean id="jaxwsImplicitContextPassingRegistry"

class="ch.elca.el4j.core.contextpassing.DefaultImpl icitContextPassingRegist

ry" />

 <!-- JAXBContext used by the JaxwsJaxb protocol to marshall the

implicit context -->

 <bean id="jaxwsContextPassingContext"

class="javax.xml.bind.JAXBContext" factory-method=" newInstance">

 <constructor-arg index="0">

 <list>

 <value>yourContextPassingValue</val ue>

 </list>

 </constructor-arg>

 </bean>

</beans>

The main bean of this file is the JaxwsProtocol . This bean has one other important
property beside the well known properties contextPath and
implicitContextPassingRegistry : the jaxwsContextPassingContext used for the
implicit context passing. Every SOAP message that gets transmitted automatically
(therefore implicitly) contains this value. This is how you can share implicit context
between a client and a server.

JaxwsSpring and JaxwsSpringSoapHeaderContextPassing

Protocols to be used for clients that work with the Java interfaces of the server
(Scenario Server & Client, Method 2) using the JAX-WS remoting mode provided
by Spring.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 86 / 320
ELCA Informatique SA, Switzerland, 2009.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema /beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-ins tance"

 xsi:schemaLocation="http://www.springframework. org/schema/beans

http://www.springframework.org/schema/beans/spring- beans-2.0.xsd">

 <!-- JAX-WS Soap Protocol for clients that do n ot need generated code -

->

 <bean id="jaxwsSpringProtocol"

class="ch.elca.el4j.services.remoting.protocol.Jaxw sSpringSoapHeaderContext

Passing">

 <property name="serviceHost">

 <value>${jee-web.host}</value>

 </property>

 <property name="servicePort">

 <value>${jee-web.port}</value>

 </property>

 <property name="contextPath">

 <value>${jee-web.context}</value>

 </property>

 <property name="implicitContextPassingRegis try">

 <ref local="jaxwsImplicitContextPassing Registry" />

 </property>

 <property name="contextPassingContext">

 <ref bean="jaxwsContextPassingContext" />

 </property>

 </bean>

 <bean id="jaxwsImplicitContextPassingRegistry"

class="ch.elca.el4j.core.contextpassing.DefaultImpl icitContextPassingRegist

ry" />

 <!-- JAXBContext used by the JaxwsJaxb protocol to marshall the

implicit context -->

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 87 / 320
ELCA Informatique SA, Switzerland, 2009.

 <bean id="jaxwsContextPassingContext"

class="javax.xml.bind.JAXBContext" factory-method=" newInstance">

 <constructor-arg index="0">

 <list>

 <value>yourContextPassingValue</val ue>

 </list>

 </constructor-arg>

 </bean>

</beans>

This requires at least EL4J version 1.6. So you also have to add the following
protocol (for the client part). It is not very nice to have different EL4J protocols on
client and server side, but the pure Spring JAX-WS server implementations have
some limitations documented in SimpleJaxWsServiceExporter and
SimpleHttpServerJaxWsServiceExporter. However, if they don't apply to your
project, using only the Spring JAX-WS protocol might be an alternative.

For a fully featured example including a configuration for both protocols, look at
src/main/resource/scenarios/common/remotingtests-ja xws-protocol-config.xml
in the module-remoting-jaxws-test-jar-wsgen
(framework/tests/remoting_jaxws/jar-wsgen).

The client configuration file (jaxws-client-config.xml)

As for the protocol configuration file (jaxws-protocol-config.xml), there are two
versions for the client configuration depending on the choosen method to access
the service:

Configuration when using generated java classes usi ng wsimport (Scenario

Client only or Scenario Server & Client, Method 1)

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema /beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-ins tance"

 xsi:schemaLocation="http://www.springframework. org/schema/beans

http://www.springframework.org/schema/beans/spring- beans-2.0.xsd">

 <import resource="jaxws-protocol-config.xml" />

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 88 / 320
ELCA Informatique SA, Switzerland, 2009.

 <!-- JAX-WS Setup for classes generated by wsim port. -->

 <bean id="calculator"

 class="ch.elca.el4j.services.remoting.Remot ingProxyFactoryBean">

 <property name="remoteProtocol">

 <ref bean="jaxwsProtocol" />

 </property>

 <property name="serviceInterface">

 <value>

ch.elca.el4j.tests.remoting.service.service.gen.Cal culatorWS

 </value>

 </property>

 <property name="serviceName">

 <value>Calculator.Jaxws.Remotingtests</ value>

 </property>

 </bean>

</beans>

For a fully featured example configuration, look at
src/main/resource/scenarios/client/remotingtests-ja xws-shakespeare-

config.xml in the module-remoting-jaxws-test-jar-wsimport
(framework/tests/remoting_jaxws/jar-wsimport).

Configuration when not using generated java classes (remoting mode)

(Scenario Server & Client, Method 2)

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema /beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-ins tance"

 xsi:schemaLocation="http://www.springframework. org/schema/beans

http://www.springframework.org/schema/beans/spring- beans-2.0.xsd">

 <import resource="jaxws-protocol-config.xml" />

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 89 / 320
ELCA Informatique SA, Switzerland, 2009.

 <!-- JAX-WS Setup for clients that do not use g enerated code (using

Spring remoting) -->

 <bean id="calculator"

 class="ch.elca.el4j.services.remoting.Remot ingProxyFactoryBean">

 <property name="remoteProtocol">

 <ref bean="jaxwsSpringProtocol" />

 </property>

 <property name="protocolSpecificConfigurati on">

 <ref local="jaxwsProtocolSpecificConfig uration" />

 </property>

 <property name="serviceInterface">

<value>ch.elca.el4j.tests.remoting.jaxws.service.Ca lculator</value>

 </property>

 <property name="serviceName">

 <value>Calculator.Jaxws.Remotingtests</ value>

 </property>

 </bean>

 <bean id="jaxwsProtocolSpecificConfiguration"

class="ch.elca.el4j.services.remoting.protocol.Jaxw sSpringProtocolConfigura

tion">

 <property name="namespaceUri">

<value>http://gen.service.jaxws.remoting.tests.el4j .elca.ch/</value>

 </property>

 <property name="serviceName">

 <value>CalculatorWSService</value>

 </property>

 <property name="portName">

 <value>CalculatorWSPort</value>

 </property>

 </bean>

</beans>

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 90 / 320
ELCA Informatique SA, Switzerland, 2009.

The properties values in the bean 'jaxwsProtocolSpecificConfiguration' have to
match the values in the @WebService annotation.

For a fully featured example configuration, look at
src/main/resource/scenarios/client/remotingtests-ja xws-client-config.xml in
the module-remoting-jaxws-test-jar-wsgen
(framework/tests/remoting_jaxws/jar-wsgen).

Client only (pure consuming of a provided webservic e)

In this scenario, the intention is to write a client application for a given, provided
webservice which is perhaps not even under our control. For this target
webservice, a WSDL is provided and accessible over http. In the following
example, we use the Shakespeare webservice from xmlme.com as the service
provider (Link to the WSDL file of service)

As mentioned before, we use the help of the wsimport tool to generate client java
classes from the WSDL file. As described in the development section, the
wsimport tool is integrated into the maven build process with the EL4J maven-

jaxws-plugin . Therefore, the configuration for the java code generation can be
inserted directly inside projects pom.xml file in the plugin configuration.

 <plugin>

 <groupId>ch.elca.el4j.maven.plugins</groupId>

 <artifactId>maven-jaxws-plugin</artifactId>

 <executions>

 <execution>

 <id>ShakespeareWsdl</id>

 <goals>

 <goal>wsimport</goal>

 </goals>

 <configuration>

 <hostURL>http://${jee-web.host}:${je e-web.port}</hostURL>

 <contextURL>${jee-web.context}</cont extURL>

 <serviceURL>*.Jaxws.Remotingtests</s erviceURL>

 <wsdlUrls>

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 91 / 320
ELCA Informatique SA, Switzerland, 2009.

<wsdlUrl>http://www.xmlme.com/WSShakespeare.asmx?WS DL</wsdlUrl>

 </wsdlUrls>

 </configuration>

 </execution>

 </executions>

 </plugin>

When building the project using mvn clean install , the WSDL file inside is
fetched and the java client code is generated for the project.

The module module-remoting-jaxws-test-jar-wsimport
(framework/tests/remoting_jaxws/jar-wsimport) adopts this technique using the
previously mentioned Shakespeare webservice. The generated java classes can
be found under target/jaxws/wsimport/java .

Server and Client (create a new webservice and use id)
In this scenario, the intention is to write a webservice by ourselves – and also use
it.

As we also setup a server now, some additional configuration files must be
present.

The server configuration file (jaxws-server-config.xml)

The server-side configuration file could look like the following:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema /beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-ins tance"

 xsi:schemaLocation="http://www.springframework. org/schema/beans

http://www.springframework.org/schema/beans/spring- beans-2.0.xsd">

 <import resource="jaxws-protocol-config.xml" />

 <bean id="jaxwsCalculatorExporter"

 class="ch.elca.el4j.services.remoting.Remot ingServiceExporter">

 <property name="remoteProtocol">

 <ref bean="jaxwsProtocol" />

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 92 / 320
ELCA Informatique SA, Switzerland, 2009.

 </property>

 <property name="serviceInterface">

 <value>ch.elca.el4j.tests.remoting.serv ice.Calculator</value>

 </property>

 <property name="serviceName">

 <value>Calculator.Jaxws.Remotingtests</ value>

 </property>

 <property name="service">

 <idref bean="jaxwsCalculatorImpl"/>

 </property>

 </bean>

 <bean id="jaxwsCalculatorImpl"

class="ch.elca.el4j.tests.remoting.service.impl.Cal culatorImplJaxws" />

</beans>

For a fully featured example configuration, look at
src/main/resource/scenarios/server/web/remotingtest s-jaxws-server-

config.xml in the module-remoting-jaxws-test-jar-wsgen
(framework/tests/remoting_jaxws/jar-wsgen).

Servlet configuration file (web.xml)

As in the other SOAP protocols, we have to use a web.xml file. This could look like
the following:

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-ins tance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/ j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"

 version="2.4">

 <context-param>

 <param-name>inclusiveLocations</param-name>

 <param-value>

 classpath*:mandatory/*.xml,

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 93 / 320
ELCA Informatique SA, Switzerland, 2009.

 classpath*:scenarios/server/web/jaxws-s erver-config.xml

 </param-value>

 </context-param>

 <context-param>

 <param-name>overrideBeanDefinitions</param- name>

 <param-value>false</param-value>

 </context-param>

 <context-param>

 <param-name>mergeResources</param-name>

 <param-value>false</param-value>

 </context-param>

 <servlet>

 <servlet-name>module-context-loader</servle t-name>

 <servlet-

class>ch.elca.el4j.web.context.ModuleContextLoaderS ervlet</servlet-class>

 <load-on-startup>100</load-on-startup>

 </servlet>

 <servlet>

 <servlet-name>jaxws-servlet-spring</servlet -name>

 <servlet-

class>ch.elca.el4j.services.remoting.servlet.WSSpri ngServlet</servlet-

class>

 <load-on-startup>101</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>jaxws-servlet-spring</servlet -name>

 <url-pattern>*.Remotingtests</url-pattern>

 </servlet-mapping>

</web-app>

This is a minimal working web.xml , all these lines have to be included in it. The
inclusiveLocations specifies which Spring XML files have to be processed by the
WSSpringServlet . This servlet provides the JAX-WS webservices.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 94 / 320
ELCA Informatique SA, Switzerland, 2009.

For a fully featured example web.xml configuration, look at
src/main/webapp/WEB-INF/web.xml in the module-remoting-jaxws-tests-war
(framework/tests/remoting_jaxws/war).

Server and Client (Method 1)

After we have written the interfaces and the service implementation with the
necessary JAS-WS annotations, we use the wsgen tool to generate the
corresponding WSDL file for the service specified by the java interface.

Afterwards we create the client classes from the previously generated WSDL file
with the help of the wsimport tool analogical – anolog in the client only scenario.

Even if this approach looks like an unnecessary indirection, it can be handy if the
client classes have (or should) not have direct access to the server interface
classes.

As described in the development section, the wsgen and wsimport tools are
integrated into the maven build process with the EL4J maven-jaxws-plugin .
Therefore, the configuration for the wsdl and java code generation can be
inserted directly inside projects pom.xml file in the plugin configuration.

 <plugin>

 <groupId>ch.elca.el4j.maven.plugins</groupId>

 <artifactId>maven-jaxws-plugin</artifactId>

 <executions>

 <execution>

 <goals>

 <goal>wsimport</goal>

 <goal>wsgen</goal>

 </goals>

 <configuration>

 <genWsdl>true</genWsdl>

 <hostURL>http://${jee-web.host}:${je e-web.port}</hostURL>

 <contextURL>${jee-web.context}</cont extURL>

 <serviceURL>*.Jaxws.Remotingtests</s erviceURL>

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 95 / 320
ELCA Informatique SA, Switzerland, 2009.

<wsdlDirectory>${project.build.directory}/jaxws/wsg en/wsdl</wsdlDirectory>

 </configuration>

 </execution>

 </executions>

 </plugin>

When building the project using mvn clean install , the WSDL file is generated in
directory.

The module module-remoting-jaxws-test-jar-wsgen
(framework/tests/remoting_jaxws/jar-wsgen) adopts this technique. The
generated WSDL file can be found under target/jaxws/wsgen/wsdl . The
generated java classes can be found under target/jaxws/wsimport/java .

Server and Client (Method 2)

If the client classes have direct access to the java interfaces defined for the
server, we can basically skip the step of wsdl and client stubs generation. The
service the is provided dynamically using the remoting mode of JAX-WS provided
by Spring.

To achieve this, we basically just need the client configuration and then access
the interface defined in the server using the (Spring) ApplicationContext .

The module module-remoting-jaxws-tests-functional_tests
(framework/tests/remoting_jaxws/functional-tests) adopts this technique.

Avoid LazyInitializationExceptions while marshaling
persisted objects

Detailed description: Persisted objects that have lazily initialized
properties/references get wrapped using Hibernate Proxies. When such an object
should be sent over the network, JAXB tries to serialize it. During this process it
tries to access all the fields that have to included and therefore leads to a
LazyInitializationException (because in general, the Hibernate session has
already been closed). Simply setting the property to null is not a solution, because
the object is therefore modified and Hibernate is willing to store it to the database.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 96 / 320
ELCA Informatique SA, Switzerland, 2009.

The solution using module-jaxws (based on
https://forum.hibernate.org/viewtopic.php?f=1&t=998896 and Do Phuong Hoang):

• Declare the improved AccessorFactory at package level inside the
package-info.java:

@XmlAccessorFactory(HibernateJAXBAccessorFactory.cl ass)

package ch.elca.your.project.dom;

import com.sun.xml.bind.XmlAccessorFactory;

import

ch.elca.el4j.services.remoting.jaxb.hibernate.Hiber nateJAXBAccessorFactory;

• Annotate the web service implementation with
@UsesJAXBContext(JAXBContextFactoryImpl.class)

To control which values should be loaded, it is recommended to use the
DataExtent feature described in HibernateGuidelines#ControlLoading

Implementation constraints (for EL4J version 1.5.1 and
below)

Remark: Starting with EL4J version 1.6 these constraints do NOT apply anymore.

JAX-WS does not make it easy to integrate it into the EL4J framework. The
development of JAX-WS webservices implies the use of special tools that
generate client stubs class files. Unfortunately, these stubs don't implement the
server's service interface. It is therefore necessary, to write different code on the
server (that uses the specified interfaces) and code for the client (that uses the
generated classes). The el4j framework tries to mitigate this by providing
automatically created dynamic proxies. These allow interacting with the client
stubs using the original interface. But this is only possible if some rules are strictly
applied:

• Annotate the webservice class as @WebService , set the following properties

o The name property must be the name of the implemented core
interface + "WS"

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 97 / 320
ELCA Informatique SA, Switzerland, 2009.

o The serviceName property must be the name of the implemented core
interface + "WSService"

o The targetNamespace property must be "http://gen." + package name
of implemented core interface

• Optionally annotate all methods selected to export with @WebMethod
(otherwise all methods are exported)

• Pay attention when using @XML... annotations. Do not rename properties,

otherwise the dynamic proxy cannot perform the translation of the
properties.

• Maps aren't supported. So use List<!SomeKeyAndValueType> objects
instead.

• Neither multi-dimensional arrays nor nested collections like List<List<...>>

are supported out-of-the-box. They need a type adapter
(@XmlJavaTypeAdapter). An example can be found in the unit tests where an
adapter to int[][] is shown.

If webservice methods generate exceptions, mind the following:

• Internally, exceptions have to be reconstructed on the client side.

• Therefore only properties of an exception that can be accessed via
getter/setter are preserved. Rely only on these properties!

The @WebService annotation must be of the following form:

@WebService(name = "XyzWS",

 serviceName = "XyzWSService",

 targetNamespace = "http://gen.package-name-of-X yz/")

public class XyzImpl implements Xyz {

 @WebMethod

 public void doSomething(){...}

}

If you want to annotate the interface instead of the implementation add
@WebService(... endpointInterface=Xyz ...) to the implementation class.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 98 / 320
ELCA Informatique SA, Switzerland, 2009.

Development
The workflow for developing JAX-WS webservice without the help of the EL4J
framework looks like the following.

The server:

• Write the webservice class and annotate it (@WebService, @WebMethod
...), if you use Spring JAX-WS for the client part also annotate the interface

• Generate helper classes (needed by the WS-Servlet) using the wsgen tool

• Configure the WS-Servlet to load the generated classes.

The client:

• Generate a WSDL file from the webservice class using the wsgen tool
(parameter: -wsdl)

• Replace in the generated WSDL file the string REPLACE_WITH_ACTUAL_URL
with the actual webservice URL

• Run the wsimport tool to generate the client stubs

• Use these classes to communicate with the webservice.

The EL4J framework simplifies this process by integrating the wsgen and wsimport
tool into the maven build process. The additions in the pom.xml file look like this:

 <build>

 <plugins>

 <plugin>

 <groupId>ch.elca.el4j.maven.plugins </groupId>

 <artifactId>maven-jaxws-plugin</art ifactId>

 <executions>

 <execution>

 <goals>

 <goal>wsimport</goal>

 <goal>wsgen</goal>

 </goals>

 <configuration>

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 99 / 320
ELCA Informatique SA, Switzerland, 2009.

 <genWsdl>true</genWsdl>

 <hostURL>http://${jee-w eb.host}:${jee-

web.port}</hostURL>

 <contextURL>${jee-web.c ontext}</contextURL>

 <serviceURL>*.Jaxws.Rem otingtests</serviceURL>

 <sei>*</sei>

 </configuration>

 </execution>

 </executions>

 </plugin>

 </plugins>

 </build>

In the sei tag, either a (list of) fully qualified class names or a * is allowed (this is
the default value). The later goes through all the class files and picks the ones
having a @WebService annotation (see also MavenJaxwsPlugin).

In this configuration WSDL files are generated from the class files by searching
for @WebService annotations. Then the plugin generates from all the WSDL files in
the <wsdlDirectory> (which is by default the output directory of the previous step)
client stubs. The client will try to connect the service at the URL composed of the
three parameters <hostURL> , <contextURL> and <serviceURL> .

However, it is also possible to modify the generate WSDL files. Specify another
<wsdlDirectory> and copy the modifies files to this folder. The next mvn install
will then create the client stubs from these WSDL files.

So the development using EL4J looks like this:

The server:

• Write the webservice class and annotate it (@WebService, @WebMethod
...), if you use Spring JAX-WS for the client part also annotate the interface

• Add and configure the jaxws-maven-plugin in your pom.xml

• Configure all xml files described above (web.xml , remote-servlet.xml ,
jaxws-server-config.xml , jaxws-client-config.xml)

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 100 / 320
ELCA Informatique SA, Switzerland, 2009.

The client:

• All required stubs are generated by the maven-jaxws-plugin (see example

configuration shown above). If you use Spring JAX-WS, you don't need the
wsimport goal.

• Get the client stub (e.g. using getBean("Calculator")). You will then either

get access directly to the generated classes or (if you use Spring JAX-WS)
Spring will create proxies for you (depending on the chosen protocol)

WS security with JBoss

Successful tested tutorial:
http://www.developer.com/java/other/article.php/10936_3802631_1/Securing-
Web-Services-in-JBoss-Application-Server-with-WS-Security.htm

Known limitations
• Spring and JAXWS: No mixing of @Webmethod and @Transactional

Annotations allowed (see last post for work-around)

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 101 / 320
ELCA Informatique SA, Switzerland, 2009.

Documentation for module EJB
remoting
Remark: in the current version of el4j, this module is not kept up to date. We
consider the EJB 2-like support not so important any more.

Purpose

Convenience module to expose spring beans as EJB session beans . This

module extends the ModuleRemoting, i.e. supports the same remoting features
and allows switching from one of the other protocols to EJB and vice versa.

edit purpose

Important concepts

Remark: The EJB support is currently not working in EL4J 1.1 (due to the new

build system). We will fix it as soon as possible. The documentation still is
EL4Ant? -specific.

EL4J provides its own remoting services infrastructure (ModuleRemoting) that
simplifies the use of remoting protocols supported by Spring. In addition, it adds
support to pass an implicit context between the remote parties.

This module allows deploying Spring beans in EJB compliant containers,
wrapping them transparently into session beans. Since most application
containers do not allow creating enterprise beans at runtime, they have to be
generated at deploy time and packed into an EAR. This is done transparently by
the build system, if the needed plugin is activated.

How to use

Configuration
The protocol configuration is analogous to the description in the easy remoting
module.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 102 / 320
ELCA Informatique SA, Switzerland, 2009.

How to use the EJB protocol

Different from the other remoting protocols, where all remoting specific objects
are created dynamically at runtime, most EJB containers demand beans to be
available at deploy-time. This requires to generate session bean wrappers during
the build process. EL4Ant supplies a module using XDoclet which automates this
step. Apart form this speciality one can do as much as with the other protocols.
However there are some constraints given by the EJB world. Currently, JBoss,
WebLogic and WebSphere (not much tested yet) are supported.

Protocol definition

Additionally to the protocol-independent properties, EJB protocol definitions have
another one specifying the JNDI environment. This is a Properties object defining
the initial JNDI context. There are already such environment definitions for the
three supported EJB containers, stored in the plugin's scenarios.

The EJB protocol uses a configuration object in order to specify service-related
configurations. It contains a number of properties describing the EJB session
bean's lifecycle, a mapping from EJB to service bean methods and a map to
supply additional XDoclet tags.

Constraints

• Service beans wrapped in stateful session beans must live a prototype

lifecycle. Beans wrapped in stateless session beans can be either declared
as singletons or prototypes (be aware of what this means, you can create
contention points!

• The service bean must implement java.lang.Serializable and all

members it references (directly or indirectly) too. Note: using writeObject
and readObject may help dealing with complicated situations.

• Exceptions thrown by service beans must be subclasses of
java.lang.Exception (JBoss allows using java.lang.Exception , but
WebLogic doesn't. see EJB 2.1 spec 18.1.1).

Method Mappings

EJB method name property name additional info / constraints

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 103 / 320
ELCA Informatique SA, Switzerland, 2009.

EJB method name property name additional info / constraints

ejbActivate() activate

ejbPassivate() passivate

ejbRemove() remove

A method with void as return type
and an empty argument list. All

checked exceptions are wrapped into
an unchecked one that aren't

propagated to the client.

setSessionContext(SessionContext
ctx)

sessionContext A method that takes a
javax.ejb.SessionContext as

parameter

create(Object[] args) create There's only one custom create
method available that takes an object
array as parameter. Parameters are

supplied through the
createArgument property, a list. Any
checked exceptions are wrapped in a

javax.ejb.CreateException

afterBegin() afterBegin

beforeCompletion() beforeCompletion

A method with void as return type
and an empty argument list. All

checked exceptions are wrapped into
an unchecked to keep them on

server side.

afterCompletion(boolean commit) afterCompletion A method that takes a boolean
argument. All Exceptions are kept on

server side.

Exceptions

All exceptions defined on the service interface are sent to the client. Additionally,
all runtime exceptions thrown by the service bean are forwarded to the client too
(wrapping and unwrapping is done transparently). We chose to do this for
developer convenience. If the exception class does not exist on the client side,
the string of the exception message is displayed. All other exceptions stay on the
server side. Especially exceptions thrown during activation and passivation are
wrapped into runtime exceptions and stay on server-side. The tests (module-

remoting_ejb-tets) provide some examples.

Adding additional XDoclet tags

The EJB remoting plugin allows adding additional XDoclet tags or to override
exisiting ones. They are specified through the configuration object that has to be
specified on the RemotingServiceExporter as well as on the
RemotingBeanFactory. Additional tags are provided by the docletTags property,
which is a map and conform the following naming scheme:

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 104 / 320
ELCA Informatique SA, Switzerland, 2009.

• class add XDoclet tags on class level

• null add XDoclet tags to all methods

• <methodName> add XDoclet tags to all methods with the given name

• <methodName(java.lang.String, int)> add XDoclet tags to the method

with the given signature (Note: consists of the method name and the
paremeters' fully qualified types only -- no return type or variable names)

1.1.1.1.1.1 Example

<property name="docletTags">

 <map>

 <entry key="class">

 <value>@ejb.util generate="logical"</va lue>

 </entry>

 <entry>

 <key><null/></key>

 <value>@ejb.do-whatever foo="bar"</valu e>

 </entry>

 <entry key="foo">

 <value>@ejb.dao call="helloWorld"</valu e>

 </entry>

 <entry key="bar(java.lang.String, org.foo.b ar.Foobar, int)">

 <value>@jboss.persistence datasource="f oo" read-

only="false"</value>

 </entry>

 <entry key="passivate">

 <list>

 <value>@test arg="doit"</value>

 <value>@ejb.interface-method view-t ype="both"</value>

 </list>

 </entry>

 </map>

</property>

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 105 / 320
ELCA Informatique SA, Switzerland, 2009.

How to use the build system plugin

The EJB build system plugin adds two hooks to the project that generate the
needed session beans transparently. In order to get them activated, one has to
add the following attributes:

<attribute name="runtime.runnable" value="true"/>

<attribute name="j2ee.ear.application"/>

<attribute name="remoting.ejb" value="true"/>

<attribute name="remoting.ejb.inclusiveLocations"

value="classpath*:mandatory/env.xml,classpath*:/gui /server-config.xml"/>

<!-- configurations to include -->

<attribute name="remoting.ejb.exclusiveLocations"

value="classpath*:gui/client-config.xml"/> <!-- con figurations to exclude -

->

For using the plugin you have to copy the remoting_ejb.jar into your build
system's lib directory. And it has to be added to the project in order to use it. You
can add it to the plugins.xml (there are no attributes to set):

<plugin name="ejb" file="buildsystem/remoting_ejb/r emoting_ejb.xml"/>

Known issues

• Weblogic 8.1 Weblogic is not able to resolve Spring wildcard-locations,

where the asterisks is in the second part. You have to enumerate the
configuration locations explicitly or use the module application context.

o valid use of wildcards in Weblogic:

� classpath:foo/bar.xml

� classpath*:foo/bar.xml

o invalid use of wildcards in Weblogic:

� classpath:foo/*.xml

� classpath*:foo/*.xml

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 106 / 320
ELCA Informatique SA, Switzerland, 2009.

How to use the EJB remoting module without the EL4A nt?
build system
There's no need to use the EL4Ant? build system in order to use the EJB
remoting module. You need to perform the following steps:

1. compile the source code

2. run the EJB wrapper generator which creates an annotated Java source
file.

3. run The XDoclet task for your application server that will use the annotated
Java file created before to generate all the needed EJB specific files.

4. create an appropriate application.xml

5. pack the classes and all required libraries into an EAR file

In principle there's no binding to a specific build system at all. But using Ant
simplifies the whole process (e.g. XDoclet Ant tasks).

Todo

The EJB wrapper generator's core is contained in the EJB remoting module,
whereas the binding to Velocity, which is used to generate the wrapper, is located
in the build system plugin (see internal design for details). Providing a separate
jar file that contains all the needed libraries (Spring, Velocity, commons-logging,
...) and that supports direct usage through the command line would simplify the
above process.

References
• ModuleRemoting

• EJB 2.1 specification
http://java.sun.com/j2ee http://jcp.org/en/jsr/detail?id=153

• XDoclet
http://xdoclet.sourceforge.net/

• Velocity
http://jakarta.apache.org/velocity/

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 107 / 320
ELCA Informatique SA, Switzerland, 2009.

Internal design

EJB generation

The session beans are generated using a hook of the build system. This hook
uses Velocity to create session beans that delegate the invocations to the POJOs
that implement the services. The generated Java files contain javadoc comments
that are read by XDoclet to create the real EJB-aware classes. Next, the hook
compiles the generated classes and puts them in the module's class path. Finally,
it generates the deployment descriptor (application.xml).

The buildsystem requires to start the complete application to be able to create the
templates. Since there's no easy mechanism to filter the configuration files that
are needed to start the application in a Spring container, the user has to provide
them with the remoting.ejb.inclusiveLocations and
remoting.ejb.exclusiveLocations attributes.

Each application container has it's own deployment descriptor. The remoting EJB
plugin gets the container that is currently used from the actual J2EE? -EJB plugin.
This plugin also provides all the tasks to manage the server (e.g. starting,
stopping, deploying) and to create EARs. Each remoting EJB application creates
its EAR file. Of course, this file can contain more than one EJB application using
build system dependencies.

Important : To avoid dependencies, we use reflection to get access to classes

residing in the framework module. For simplicity, there's a facade to generate the
beans that is in the EJB remoting module. Its interfaces are copied to the build
system plugin where we just need to get the facade's implementation by
reflection. All other operations are performed on the interface.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 108 / 320
ELCA Informatique SA, Switzerland, 2009.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 109 / 320
ELCA Informatique SA, Switzerland, 2009.

Adding support for another container

Adding support for a different container is straightforward. There are two things to
do:

1. add a new ant file for XDocleting the generated files. You can just copy an

existing one, do a search and replace on the container's name and adapt
the container specific XDoclet target.

2. add the plugin dependency to the ejb/ear.xml file.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 110 / 320
ELCA Informatique SA, Switzerland, 2009.

Generic DAOs in EL4J

Basic introduction

When writing DAOs (Data Access Objects), the basic CRUD (Create, Read,
Update, Delete) operations tend to be more or less similar. The goal of the
GenericDAO of EL4J is to eliminate these repetitive steps. The following class
diagram illustrate this:

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 111 / 320
ELCA Informatique SA, Switzerland, 2009.

A user can use the ConvenienceGenericDao interface to access a database. It
already provides the CRUD operations. The class GenericHibernateDao
implements this interface for Hibernate (there is also an implementation for

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 112 / 320
ELCA Informatique SA, Switzerland, 2009.

iBatis). When custom DAO-methods are required, they can be added in a
subclass of the ConvenienceGenericDao (these custom methods are then
implemented by hand). (It is also possible to use the canonical GenericDao, but
we provide it mainly for internal use.)

QueryObject

The following UML diagram shows the QueryObject with the possible contained
search criteria.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 113 / 320
ELCA Informatique SA, Switzerland, 2009.

Here is some sample code that shows how to use this:

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 114 / 320
ELCA Informatique SA, Switzerland, 2009.

 import static ch.elca.el4j.services.search.criteri as.CriteriaHelper.*;

 ..

 query = new QueryObject();

 query.addCriteria(

 or (and (not(new ComparisonCriteria("name","Ghos t","!=","String")),

 (or (not(like("name", "%host%")),

 like("name", "%host%"))))));

 query.setMaxResults(20); // defaults to 100 el ements

 query.setFirstResult(40); // defaults to 0

 // we want the name field ordered alphabetically

 query.addOrder(Order.desc("name"));

 list = dao.findByQuery(query);

Remark: the CriteriaHelper class that is imported statically (a feature since Java
5) has convenience methods or() , and() , and not() that create OrCriteria ,
AndCriteria and NotCriteria , respectively.

Sometimes we can omit or bypass the service
layer

The approach has the following reference architecture (the horizontal, dashed
lines indicate the interfaces between layers):

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 115 / 320
ELCA Informatique SA, Switzerland, 2009.

We use the three "traditional" layers one uses typically. But there are some
changes:

1. The Service Layer is optional. One can bypass the service layer in case the
functionality is data-centered (CRUD-operations on a domain object
model). The service layer may be useful for complex business functionality
or for operations that involve many domain objects. It is also possible that
one mainly works on the domain object model and only uses the service
layer for a small part of more complex processings.

2. Instead of traditional DAO interfaces to find and store domain objects we

use a GenericDao object (there is (at the moment) one GenericDao class
per Entity). The standard find and store interface is generic (no hand-
coding involved): There is no need to write the basic interface by hand. The
latter also simplifies to bind (=attach) normal data access into the
presentation layer. For particular functionality, one can extend the generic
DAO interface.

3. The domain object model (normal POJOs) is annotated (with JDK 1.5

annotations) in order to add constraints/ additional data about the model

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 116 / 320
ELCA Informatique SA, Switzerland, 2009.

only once (on the model). Sample contraints include: design by contract
rules, validation information, mapping to database (JPA) or XML (JAXB), ...
These annotations are then consumed by various tools that work with the
domain object model (UI-validation, O/R-mapping, O/X-mapping, UI-
rendering, ...). The domain object model is made up of Entities in the DDD
terminology. The Entities in the domain object model are not just a "dumb"
holder of data: it contains methods for "real" processings of the domain.
When working on the domain layer, one either I) finds Entities via the
GenericDao first and then works on these Entities (1a and 1b) and stores
them again or II) one creates Entities (via new), works on them and stores
them via the GenericDao.
Please refer also to the Annotation Cheat Sheets.

Benefits of the approach
• Less duplication & cleaner code: you concentrate on the essential

• No code generation needed

• For the benefits of the DDD, we refer to the referenced book

• For data-centric applications you avoid to have a mostly delegating service
layer

• Providing information such as how to validate objects on the domain model

and having the domain model everywhere available helps to avoid
duplication of such information.

References
• Where we have the original idea from http://www.hibernate.org/328.html

• A description of a similar implementation http://www-
128.ibm.com/developerworks/java/library/j-genericdao.html

• Domain driven design (DDD) book: summary
http://www.domaindrivendesign.org/

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 117 / 320
ELCA Informatique SA, Switzerland, 2009.

• Discussion about the fact that DAOs are no longer needed. We think DAOs

are still useful. http://www.adam-
bien.com/roller/abien/entry/jpa_ejb3_killed_the_dao

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 118 / 320
ELCA Informatique SA, Switzerland, 2009.

Documentation for module Swing

Purpose

The Swing module improves the Swing programming model with various little
helper classes and a very light application framework.

Introduction

Creating GUIs is a task with a high amount of repetitive work. In addition to that,
Swing itself can be tricky when trying to modify the GUI from a thread other than
the EDT. Therefore, a collection of light frameworks, each addressing a different
aspect of GUI programming, has been selected and integrated.

This module is based on Suns AppFramework, so it is strongly recommended to
read https://appframework.dev.java.net/intro/index.html.

Features of the EL4J GUI framework
• Binding (connect POJO and GUI-Element to automatically synchronize

content)

o The binding is done by name (connect elements that are named the

same way), by annotation or by explicit programmatic binding. By
name is the easiest, annotations allow to use different names for the
GUI elements (but this is more verbose), and explicit programmatic
binding provides full control (which is needed for list and tables).

o Whenever the user changes the content of a bound GUI component,
change events are fired internally. On order to make these events
reach the underlying POJO, it needs an event listener infrastructure,
which e.g. can be added at runtime by using a special Mixin (see
PropertyChangeListenerMixin): bindingEnabledPOJO =

PropertyChangeListenerMixin.addPropertyChangeMixin(ordinaryPOJO

) .

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 119 / 320
ELCA Informatique SA, Switzerland, 2009.

o By default, hibernate validations annotations on the POJO are

evaluated to signal the user directly when he violates a validation
constraint. This avoids that the validation constraints need to be
implemented multiple times (in the GUI and on the POJO). You can
also easily validate a POJO via the hibernate validator API.

o Instead of using binding, the standard Swing model-approach can be
used as well if this is necessary. Trees for example cannot be
handled by Beans Binding yet, so you have to implement a
TreeModel here.

o In this framework, editing values in gui-elements directly changes the

underlying POJOs. This leads to the question what to do if changes
should only be applied if the user clicks "OK"? There are two ways to
handler this. You can make a copy of the POJO and connect it to the
GUI. If changes are accepted replace the original by the modified.
This approach guarantees full control. If the POJO is a Java Bean
and doesn't need deep copy there's a simpler way:

� Before letting the user edit the data, wrap the model object

with the SaveRestoreMixin and call save(). If the user discards
the changes call restore().

� Keep in mind that only publicly accessible java bean
properties of primitive or immutable type get saved and
restored! There is no deep copy.

� Background info: This approach has been chosen to provide a

simple but homogeneous way to store various kinds of model
object. The different way of binding tables (using
TableModels) compared to normal GUI elements like
TextFields (which hold their state in the text property) made it
impossible to implement this features by simply modifying the
binding parameters. For TextFields, for example, one could
have unbound the model during user interaction to prevent the
model from getting updated. But that would have made
validation much more difficult.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 120 / 320
ELCA Informatique SA, Switzerland, 2009.

o More details: ModuleSwingBinding

• cookSwing: XML representation of Swing components

o Each XML tag represents a Swing component, which will be
generated at runtime. See section cookSwing below

o For more information see ModuleSwingXML

• Event bus (for simple implicit interconnection besides the normal binding)

o We recommend to use the binding framework for normal GUI-

Element <-> POJO bindings. The event bus would then be for more
"high-level" events. This could be status events, user closed a frame,
etc; in general something that is not directly described by a model.
Each part of your application should document in the javadoc what
events (=what classes) it sends out and what their semantic is.

o Typically there are different classes that send and receive events via

the event bus. In order to have the overview, we recommend to set
up a global document (e.g. in an Excel-sheet or a HTML table) that
describes all possible events (their classes, their senders and
receivers, their semantics, conditions how they need to be handled
(EDT or not), ...). For complex cases, even a global sequence
diagram could clarify the situation.

o Rationale: such documentation is rather light but its helps for
debugging and newcomers.

• Exception handler framework (see Exceptions)

• MDI-support (see MDIApplication)

• Docking framework (see DockingApplication)

• I18n and resources (names, GIFs) defined external to the application (they
are then injected into the application)

o See NameOfClass.properties and resource bundles

• GUI session management: This automatically manages the user layout so
that next time he launches the application this layout is restored (this

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 121 / 320
ELCA Informatique SA, Switzerland, 2009.

includes table columns sizes and windows sizes and positions): how many
Swing applications do that currently, and how many users are fed up of
recreating their preferred layout every time? This can also be extended (to
save other aspects of specific Components).

• Flexible @Action annotation to convert a method in an action

o The basic functionality of this can be found in Sun's application
framework

o EL4J adds some mini-patterns to avoid that all Actions need to be

defined in one class: see getActionsContext() of class
GUIApplication. In short, you split your Actions on n classes.
Overwrite the m_actionsContext (if you are in your central GUI class
i.e. the one you launch via GUIApplication.launch) or create a new
instance of ActionsContext using ActionsContext.create(Object...

instancesWithActionMappings) . Then you can search for actions
using m_actionsContext.getAction() .

o How you could e.g. set up your application: in the central GUI class
(the one extending GUIApplication, MDIApplication or
DockingApplication) you just draw the top-level elements and put the
general Actions (help, about, set global properties, ...). Then for each
important concept X that your application treats, you create a new
class called XActions. So e.g. if you have an application working on
users, you could have a UserActions class that manages the
currently active user and whenever one invokes an action (via a
menu/ a hotkey or a button) the action on this class determines the
current user and invokes the action. We recommend that UserAction
extends AbstractBean in order for it to notify property changes (for
the activation of Actions, see next point).

• Convenient activation of Actions in function of application state. This works

via the enabledProperty field of the @Action annotation. Example:
@Action(enabledProperty = "admin") public void edi tPermissions()

{...

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 122 / 320
ELCA Informatique SA, Switzerland, 2009.

o One can use the following pattern to make it simple to implement

and use this. Lets say we have a boolean flag admin that we want to
use to enable or disable certain actions. We could then write a
method boolean isAdmin() and a method void setAdmin(boolean

newValue) to update the value of admin . In the method setAdmin we
update the value and fire a property change (via
firePropertyChange("admin", oldAdmin, newAdmin);).

o As a convenience, you can put the 2nd parameter of invocations to
firePropertyChange to null. Although this works in this special case it
is better to write correct code. See
http://stuffthathappens.com/blog/2007/12/15/javabeans-
propertychangesupport-trick/.

o When you split Actions into multiple classes, the isX() method linked

to in enabledProperty="X" must be in the same class as the Action
method. (This is also why we recommend that your XAction extends
AbstractBean.)

• Handle the GUI startup already according to the best practices (e.g. draw
the GUI in the EDT)

• Hints for GUI programming

o To create forms easily there is a light LayoutManager called

DesignGridLayout. We propose this layout manager to speed up the
creation of dialogs and to have layouts with a professional touch.
Under DesignGridLayout samples (starting from Simple Examples)
you find a number of sample layouts to illustrate its simplicity. Please
refer also to the demos for an example.

o Convenience method to create menus rapidly (see
GUIApplication.createMenu)

o Access to the spring application context (not to confuse with Sun's
GUI frameworks own org.jdesktop.application.ApplicationContext
abstraction!), already during application startup

o Abbot can be used to test GUIs automatically.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 123 / 320
ELCA Informatique SA, Switzerland, 2009.

• Support for long-running Tasks (see Task and TaskService classes) Now

any time-consuming task can be started on a specific thread and feedback
progress to the GUI without having to care about EDT). Task management
has some interesting extension points that allow you to monitor pending
tasks (e.g. in the status bar), to block the GUI while some tasks are going
on.

• Exit handler with veto-able exit

• Reusable components

o About Dialog

o Splash Screen

o IntegerField

o A list of additional widgets and GUI hints: see references at the end

• Bugfixes for the integrated application framework

• Demo application that demonstrates most of these features

For more information on these features: (1) look through the integrated parts
below, (2) check out the demo, and (3) ask us (SWI, POS).

Some extensions to the integrated frameworks

Properties files (AppFramework)

The properties provided by the framework are of the form:
nameOfTheGUIComponent.property . Module-Swing adds the following:

• title : If the component gets wrapped into a frame, then the frame gets this
title

• name: If the component gets wrapped into a frame, then the frame gets this
name

• help : a URL of a website that provide more information about this
component/frame

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 124 / 320
ELCA Informatique SA, Switzerland, 2009.

Action context (AppFramework)

By default, the actions (methods annotated with @Action) need to be defined in
the main application (or a super class). This can lead to "Spaghetti-Code" and
work-arounds are rather inconvenient. Therefore module-Swing adds the notion
of ActionsContext, which is very similar to Spring's ApplicationContext. The
ActionsContext consists of a list of objects that contain annotated methods and an
optional parent context. Retrieving an action using getAction works as follows:

• Search the action in the list of objects (the order is important, this also

allows action overriding). Of course, actions defined in super-classes are
considered, too.

• If no matching action could be found, the parent action context is asked.

Bind non standard GUI components

Most of the standard components included in Swing are ready to use, i.e. if you
bind a value to a JTextField it is known that the property 'text' of this component is
meant actually.

Additional default properties for GUI components can be specified using
BindingFactory.getDefaultProperties().register(widg etInstanceOrClass,

propertyToBind) .

How to get started with our demo application
• Download el4j version 1.2 (or higher) or check out the latest el4j version

from the svn repository (we recommend to download the el4j convenience
zip and in d:/el4j do a svn co

https://el4j.svn.sourceforge.net/svnroot/el4j/trunk /el4j external)
(Alternatively, snapshot-versions/ releases of the components were also
uploaded to the EL4J mvn repository.)

• The swing module can be found in
external/external/framework/modules/swing

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 125 / 320
ELCA Informatique SA, Switzerland, 2009.

• The demo for the swing module can be found under

external/applications/templates/gui . Follow the instructions in the
contained README.txt file.

• Start eclipse, import the maven modules you are interested in, study the
code and run it (the main program is in MainFormMDI for an MDI demo and
MainFormDocking for a "docking" demo)

Demos
• Demo container using MDI (MainFormMDI)

• Demo container using docking framework (MainFormDocking)

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 126 / 320
ELCA Informatique SA, Switzerland, 2009.

• Resource Injection Demo (ResourceInjectionDemoForm)

o The text of the main label is injected from the properties file. Few
code, very easy...

• Cancelable Form Demo (CancelableDemoForm)

o Shows the use of a special mixin that allows to add save/restore
functionality to any bean. This enables Apply and Cancel buttons.

• Master/Detail Demo (MasterDetailDemoForm)

o A table which is bound to a model. Furthermore the currently
selected item can be edited either in the table or in the fields above
the table. Theses field are manually bound to the table (see
masterDetail variable). An other feature is that the table entries can
be sorted.

• Binding Demo (BindingDemoForm)

o Shows various types of bindings (IntegerFields , lists, custom
validation)

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 127 / 320
ELCA Informatique SA, Switzerland, 2009.

• Search Form Demo (SearchForm)

o An example search dialog that uses eventbus (use EventBus Demo
to make events visible)

• Caching Demo (CachingDemoForm)

o Demonstrates how to configure and use EhCache using Spring.

• RefDB Form Demo (RefDBDemoForm and ReferenceEditorForm)

o Shows how a generic service such as refDB can be integrated
(including optimistic locking)

• EventBus Demo (EventBusDemoForm)

o This frame shows what events are generated

• cookSwingDemo (XMLDemoForm) (EL4J 1.4 and higher)

o This frame shows how cookSwing can be used to describe the GUI
in XML

• Miscellaneous

o In the MDI demo, if you click with the right mouse button on the

background then a pop-up menu consisting of some menu items is
shown

o In the Help menu there is an about dialog that generally has to be
configured only by the .properties file.

o The menu item Help for Admins is disabled at startup. This is
controlled by the @Action(enabledProperty = "admin") annotation.
You can get admin by clicking on "Toggle admin rights".

Technologies used internally in the framework

Please refer to the references for more details on these technologies.

• AppFramework (https://appframework.dev.java.net)

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 128 / 320
ELCA Informatique SA, Switzerland, 2009.

o A framework from Sun to simplify Swing threading issues, long-

running/non-blockable tasks and provide resource injection through
properties files. This framework may be included in JDK 7.

• BeansBinding (https://beansbinding.dev.java.net)

o A binding framework to simplify automatic binding of bean

properties. We applied a (swing module specific) patch to enable
validation on tables.

• A modified version of Hitch Binding (http://hitch.silvermindsoftware.com)

that uses BeansBinding. As only the core is used, the modified version is
directly integrated into the swing module (see Javadoc, xref).

o This enables to specify by annotations which form component should
be bound to which bean property of the model. Like this much less
BeansBinding code has to be written.

o Its main part (which has not been modified) concerns the
annotations.

• Hibernate Validation (http://validator.hibernate.org)

o Using this validation framework, the annotated model can not only
be used for validating the model while writing it to the database, but
also to check during editing on the GUI and inform the user.

• eventBus (https://eventbus.dev.java.net)

o A framework to send events, without having sender and subscriber
to know each other.

• MyDoggy (http://mydoggy.sourceforge.net)

o A Java docking framework to be used in cross-platform Swing
applications.

Configuration
There are some constant configuration parameters that need to be available
when using this module. The default values are set in

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 129 / 320
ELCA Informatique SA, Switzerland, 2009.

ch.elca.el4j.services.gui.swing.config.DefaultConfi g. For an example how to
override them see Spring bean overrideConfig in applicationGeneral.xml" in

=swing-demo-thin-client . The following entries are mandatory:

• invalidColor : the color to mark values as invalid

• selectedColor : the color to mark values as selected (mainly used in
JTables)

• validationResponder : the validation responder (a class that knows how to
react when the user entered valid/invalid data e.g. to change the text of a
validation message label)

• cellRenderer : the general cell renderer (e.g. for JLists)

• comboBoxRenderer : the renderer for JComboBox entries

• tableCellRenderer : the renderer for table cells

• tableCellEditor : the editor for table cells

TODOs
• Fast validation of single property (not the whole model)

• A extended table with Excel-like behavior

• Specialized Widgets: DoubleField, LimitedTextField (max ... chars), 3-state
CheckBox...

• Binding support for trees (we wait until beans binding has tree support)

• Swing components having invalid values get a red (X), instead of just a red
background

GUI programming hints
• Any DB call is potentially time-consuming, so every DB access should be

executed asynchronously (using Task from AppFramework)

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 130 / 320
ELCA Informatique SA, Switzerland, 2009.

• For responsive GUIs never execute synchronous methods which run longer

than 50-100ms. Also keep in mind that execution time can increase over
time.

• If you are working with eventBus events, do not forget to add the following
lines to your log4j.xml. Otherwise you will not see the exceptions thrown in
your event listeners:

<logger name="org.bushe.swing.event">

 <level value="WARN"/>

</logger>

References
• AppFramework: https://appframework.dev.java.net

o https://appframework.dev.java.net/intro/index.html

o Pages 11 to 47 in
http://conferences.oreillynet.com/presentations/os2007/os_haase.pdf

o Another article
http://java.sun.com/developer/technicalArticles/javase/swingappfr/

o Older presentations can be found on the homepage

• Beans Binding: https://beansbinding.dev.java.net

o At the moment only the blog shows version-1.0-examples.

o A presentation on a previous version can be nevertheless interesting

to get an impression: pages 49 to 74 in
http://conferences.oreillynet.com/presentations/os2007/os_haase.pdf

• Hitch Binding: http://hitch.silvermindsoftware.com

o The Tutorial is only valid up to Section "Make binder calls"

o Binding is instead done using BindingGroup group =

binder.getAutoBinding(this); group.bind();

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 131 / 320
ELCA Informatique SA, Switzerland, 2009.

o The annotation reference can be found in chapter 3 of the manual

• Hibernate Validation: http://validator.hibernate.org

o http://www.hibernate.org/hib_docs/validator/reference/en/html_single
/

• eventBus: https://eventbus.dev.java.net

o Study the simple example on the home page:
https://eventbus.dev.java.net/)

o The presentation takes a deeper look into it:
https://eventbus.dev.java.net/HopOnTheEventBus-Web.ppt

• cookSwing: http://cookxml.yuanheng.org/cookswing/

o The site contains the documentation of all tags.

• Standard Swing components:
http://java.sun.com/docs/books/tutorial/ui/features/compWin.html

• More Swing components:

o http://www.tutego.com/java/additional-java-swing-components.htm
(but don't use JXTable for sorting as this doesn't work together with
beans

o https://swingx.dev.java.net/

o http://common.l2fprod.com/index.php

binding. See Master/Detail Demo how this can be done)

• An alternative docking framework can be found at
https://flexdock.dev.java.net/ but it seems to be sleeping

• FAQ on swing: http://www.chka.de/swing/

• GUI test framework: TestingWithAbbot (a demo GUI test is part of the
application template).

• EDT = event dispatching thread. It's important use the EDT correctly in
your swing applications (otherwise your application becomes unresponsive

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 132 / 320
ELCA Informatique SA, Switzerland, 2009.

or deadlocks). Here is a book chapter about it. Here is a library that has
tools to check for incorrect usage of the EDT (refer to the section about
testing and debugging). The Tasks abstraction of Sun's App Framework
helps to solve some EDT issues.

• A comparison of different layout managers:
http://wiki.java.net/bin/view/Javadesktop/LayoutManagerShowdown?TWIKI
SID=b9e82416ed1c5adaee26bbfbcb3e1db7

• Java desktop community page: http://community.java.net/javadesktop/

• Nicer look and feels (laf)

o substance The downside of substance is that it requires a lot of
memory.

o nimbus

o EaSynth configuration for Synth Look&Feel We have experience and
a license for EaSynth Designer. Contact DMY or YMA.

• Icons

o Silk: icon set (16x16)

o IcoFX: a freeware icon editor (e.g. to modify icons)

o Icon search engine

Documentation for XML GUI representation in
module Swing

Introduction
The XML-GUI support in module Swing is based on CookSwing, an extensible
library that builds Java Swing GUI from XML documents. Its most important
features are:

• All Swing components can be configured.

• All AWT/Swing LayoutManagers, including GridBagLayout and
SpringLayout, can be used.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 133 / 320
ELCA Informatique SA, Switzerland, 2009.

• All Swing Border classes, including complex CompoundBorder can be built.

• Simple custom tags extensions, with many fully functional tags can be
added using one line statement. In fact, you can view the CookSwing tag
library as an extension to CookXml, the XML decoding engine behind
CookSwing.

• You can include other XML documents in a CookSwing XML file.

Let's have a look at a simple example:

<panel preferredsize="640,480">

 <borderlayout>

 <constraint location="North">

 <toolbar>

 <button action="quit" />

 <button action="cut" />

 <button action="copy" />

 <button action="paste" />

 </toolbar>

 </constraint>

 <constraint location="Center">

 <desktoppane />

 </constraint>

 </borderlayout>

</panel>

As you can image this represents a simple panel with a toolbar on top and a
desktoppane filling the rest of the space. I hope that you agree that this is more
readable than flat Swing code.

To insert this panel into a frame simply call (in the frame constructor):

CookSwing cookSwing = new CookSwing(this);

add(cookSwing.render("example.xml")); // add p anel from XML file to

frame

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 134 / 320
ELCA Informatique SA, Switzerland, 2009.

Namespaces
Before we start to explore more features let's have a look at the XML namespace.
The module Swing contains XML Schema files (xsd), that validate these XML files
and help XML editors to provide completion and assistance to the user. The
whole schema is split into four namespaces:

• http://cookxml.sf.net/ : cookXml core

• http://cookxml.sf.net/common/ : cookXml common tags

• http://cookxml.sf.net/cookswing/ : cookSwing tags

• http://www.elca.ch/el4j/cookSwing : additional tags provided by module
Swing

This leads to clean separation of tags, but also increases the size of xml
namespace declaration. The full size header looks like this:

<?xml version="1.0" encoding="UTF-8"?>

<panel xmlns="http://cookxml.sf.net/cookswing/"

 xmlns:el4j="http://www.elca.ch/el4j/cookSwing"

 xmlns:cc="http://cookxml.sf.net/common/"

 xmlns:cx="http://cookxml.sf.net/"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-inst ance"

 xsi:schemaLocation="

 http://cookxml.sf.net/cookswing/ cookSwing.xs d

 http://www.elca.ch/el4j/cookSwing el4jSwing.x sd

 http://cookxml.sf.net/common/ cookXmlCommon.x sd

 http://cookxml.sf.net/ cookXml.xsd">

In the following examples we will skip it.

XML Tags
The XML tags and attributes for swing components usually have the same name
as the components they describe. To get an impression how they work, download
the examples from the sourceforge page and look at the swing demo.

A complete list of cookSwing tags can be found at
http://cookxml.yuanheng.org/cookswing/tagdoc/index.html

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 135 / 320
ELCA Informatique SA, Switzerland, 2009.

As cookSwing is an extension of cookXml, some tags and attributes are
documented there. Here's a incomplete list of often used tags and attributes from
cookXml:

• <noadd/> just create components that are inside, but do no add them to
parent.

• var="m_myComponent" assign the created component to the variable
m_myComponent of the object passed to the cookSwing constructor.

• varref="m_myComponent" do not create a new component but use the
component stored in the variable m_myComponent

• <include/> include another xml file

AppFramework integration
The integration of the AppFramework is very easy. Use the name attribute of a
components to be able to modify it's resources from the properties file. Actions
can be set using the action attribute, <button action="run" /> for example. When
you click on the button the method run (which has to be annotated with @Action)
will be executed.

So

<menubar>

 <menu name="fileMenu">

 <menuitem action="quit" />

 </menu>

</menubar>

can be used together with

fileMenu.text = File

quit.Action.text = Exit

quit.Action.mnemonic = E

quit.Action.icon = icons/exit_16.png

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 136 / 320
ELCA Informatique SA, Switzerland, 2009.

BeansBinding integration
BeansBinding support comes with several new tags.

Simple Bindings
A simple binding of a textfield to m_person.lastName looks like this:

<textfield>

 <el4j:binding src="m_person" property="lastName " updateStrategy="read

write" />

</textfield>

Supported attributes:

• src the source object to bind. This can be an expression like
m_person.children , where all the expression behind the first dot need bean
accessors.

• property the actual property of the source object to bind (see also General
remark on attribute 'properties')

• validation should invalid values be rendered differently? (default: false)

• updateStrategy one of "read", "read once" or "read write". See javadoc of
org.jdesktop.beansbinding.AutoBinding for more information (default:
read)

List Bindings
Lists can be bound like this:

<list>

 <el4j:listbinding src="m_someListOfPersons" pro perty="lastName" />

</list>

Supported attributes:

• src the source list to bind. This can be an expression like
m_person.children , where all the expression behind the first dot need bean
accessors.

• property the actual property of each element in the source list to bind (see
also General remark on attribute 'properties')

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 137 / 320
ELCA Informatique SA, Switzerland, 2009.

• validation should invalid values be rendered differently? (default: false)

• rendererBean a custom javax.swing.ListCellRenderer Spring bean to
render the list cells (default is
GUIApplication.getInstance().getConfig().get("cellR enderer"))

Combobox Bindings
Comboboxes work just like lists:

<combobox>

 <el4j:comboboxbinding src="m_someListOfPersons" property="lastName" />

</combobox>

Supported attributes:

• src the source list to bind. This can be an expression like
m_person.children , where all the expression behind the first dot need bean
accessors.

• property the actual property of each element in the source list to bind (see
also General remark on attribute 'properties')

• validation should invalid values be rendered differently? (default: false)

• rendererBean a custom
com.silvermindsoftware.hitch.validation.response.Co mboBoxRenderer
Spring bean to render the combobox items (default is
GUIApplication.getInstance().getConfig().get("combo BoxRenderer"))

Table Bindings
Tables need configuration for each column. In the following example, a table is
bound to m_persons , where the first column shows the firstName property, the
second lastName and the third age . The first name is directly editable inside the
table cell and as the updateStrategy is "read write", the new values are
immediately propagated (the other strategies read and read once have the same
effect here, except that no column can be editable. See javadoc of JTableBinding
for more details). The validation makes the background color red for table cells
having invalid values. As known from Swing, columns can have a display class:
Boolean values are shown as checkboxes, for example.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 138 / 320
ELCA Informatique SA, Switzerland, 2009.

<table>

 <el4j:tablebinding src="m_persons" updateStrate gy="read write"

validation="true">

 <el4j:column label="First Name" property="f irstName"

editable="true" />

 <el4j:column label="Last Name" property="la stName" />

 <el4j:column label="Age" property="age" cla ss="java.lang.Integer"

editable="true" />

 </el4j:tablebinding>

</table>

Supported attributes of tablebinding :

• src the source list to bind

• updateStrategy one of "read", "read once" or "read write". See javadoc of

org.jdesktop.swingbinding.JTableBinding for more information (default:
read)

• validation should invalid values be rendered differently? (default: false)

• rendererBean a custom javax.swing.table.TableCellRenderer Spring bean

to render the table cells (default is
GUIApplication.getInstance().getConfig().get("table CellRenderer"))

• editorBean a custom javax.swing.table.TableCellEditor Spring bean to

edit a table cell (default is
GUIApplication.getInstance().getConfig().get("table CellEditor"))

Supported attributes of column :

• label the column label shown in the table header

• property the actual property of each element in the source list to bind (see
also General remark on attribute 'properties')

• editable is this column editable? (default: false)

• class the display class (e.g. java.lang.Boolean values are shown as
checkboxes) (default: java.lang.String)

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 139 / 320
ELCA Informatique SA, Switzerland, 2009.

Unfortunately, column doesn't allow to set any renderers or editors because of the
design of beansbinding. So you have to do it in Java code: After turning the
bindings on (m_binder.bindAll()) you can access the table columns (e.g.
m_references.getColumnModel().getColumn(columnIndex).setCellRenderer(...)).

General remark on attribute 'property'
The attribute 'properties' can have one of the following types:

• empty: the source object itself is taken instead of a property of it. Example:

• bean property: the general use case where the property is specified.
Example:

• EL property: the advanced way to specify properties: Some EL examples:

"${address.streetNr}" , "${address.streetName} ${address.streetNr}" ,
"${age > 65}" . Note that some of these bindings cannot be synchronized in
both directions (Hint: What should the program do if the user sets ${age >
65} from true to false?). See javadoc of
org.jdesktop.beansbinding.ELProperty for more details.

Additional tags

Flat Toolbar
The following tag is just for convenience: It generates a flat toolbar.

<el4j:flattoolbar>

 <button action="quit" />

</el4j:flattoolbar>

Designgridlayout
This tag implements the designgridlayout layout manager.

<el4j:designgridlayout>

 <el4j:row align="left" height="30">

 <label text="A label in left aligned row th at has a height of 30

pixels" />

 </el4j:row>

 <el4j:row>

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 140 / 320
ELCA Informatique SA, Switzerland, 2009.

 <cc:null colspan="3"/> <!-- skip three colu mns -->

 <label name="lblAge" horizontalalignment="R IGHT" />

 </el4j:row>

 <el4j:row align="center">

 <button action="info" />

 </el4j:row>

</el4j:designgridlayout>

New attributes for all XML tags:

• colspan the number of columns that a component spans

designgridlayout has no attributes.

Supported attributes of row :

• height the height of the row in pixels

• align the alignment of the row (left , center , right , grid)

Create component structures in Java
If one wants to create a part of the GUI programmatically the create-component
tag can help. It supports two attributes:

• create-method : The method to call to get the component (if this is omitted a
JPanel is created)

• finish-method : The method to call to do some work after all elements
inside the create-component are created.

All elements inside this tag are created but NOT added to the parent. This can be
done by implementing an Adder or manually using the finish-method .

Caution : In the following example all components will be created inside the XML
files. However, it is recommended that you instantiate such compone nts in
Java code unless you need special tags (e.g. bindin g) or XML id references .

In this sense, the example should only give you an impression, don't take it one
by one.

<el4j:create-component finish-method="setGridPanelL ayout">

 <textfield cx:var="m_name"/>

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 141 / 320
ELCA Informatique SA, Switzerland, 2009.

 <textfield cx:var="m_description" />

</el4j:create-component>

This example creates a simple JPanel and two text fields. Afterwards it calls the
method "setGridPanelLayout", which adds the components to the panel using a
special layout manager. Note that Designgridlayout is already supported to be
written in XML (see section above).

private void setGridPanelLayout(JPanel formPanel) {

 DesignGridLayout layout = new DesignGridLayout(formPanel);

 formPanel.setLayout(layout);

 layout.row().add("Name").add(m_name);

 layout.row().add("Description").add(m_descripti on);

}

Hints
• Unfortunately, eclipse has some problems validating xml files against the

cookSwing schemata. The coding support (completion) is not perfect,
neither. So keep in mind that not all errors are real ones. NetBeans has a
better XML editor, so if you are creating XML-GUIs for a longer time,
consider installing it...

Documentation for binding in module Swing

General

Binding in module Swing is based on PropertyChangeLister. All the Swing
components support this by default, but your model probably does not. Therefore
you should enhance you model using yourBindableModel =

PropertyChangeListenerMixin.addPropertyChangeMixin(yourModel); .

Binding components using XML
If you are already describing your GUI using XML, this approach is the most
comfortable. See ModuleSwingXML

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 142 / 320
ELCA Informatique SA, Switzerland, 2009.

Binding components using Java code and annotations
This abstraction level allows to bind one model object to the GUI. Binding more
than one model is possible but a bit more difficult.

To bind a model to a GUI component, the following step are required:

• Annotate the GUI component with @Form(autoBind = true)

• Annotate the model with @ModelObject(isDefault = true)

• Create a Binder and bind it.

In the following example the text field m_firstName is bound to the property
m_person.firstName (the prefix m_ gets removed automatically if present) and the
text field m_lastName is bound to m_person.lastName :

@Form(autoBind = true)

public class BindingDemoForm extends JPanel {

 private JTextField m_firstName;

 private JTextField m_lastName;

 @ModelObject(isDefault = true)

 private Person m_person;

 private final Binder m_binder = BinderManager.g etBinder(this);

 ...

 m_binder.bindAll();

 ...

}

Binding more than one model can be achieved by specifying a modelId:

 @ModelObject

 private Person m_anotherPerson;

 @BoundComponent(modelId = "anotherPerson")

 private JTextField m_firstNameOfAnotherPerson;

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 143 / 320
ELCA Informatique SA, Switzerland, 2009.

See also the annotation section in the Hitch manual. But keep in mind that big
parts of the API of the binder have completely changed.

An example can be found here: BindingDemoForm

Binding components using BeansBinding directly
This is the most verbose but also the most powerful way to create bindings. It is
recommended to first try the higher lever abstractions.

A good introduction into BeansBinding can be found at Shannon Hickey's Blog.
There is not too much information about it on the web and one has to pay
attention that pre-1.0 version had a slightly different API. But the source code is
documented :-).

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 144 / 320
ELCA Informatique SA, Switzerland, 2009.

Documentation for module
Hibernate

Purpose

Convenience module for Hibernate.
edit purpose

How to use

Just include classpath:scenarios/dataaccess/hibernate/*.xml and create a new
Spring config based on template for session factory bean.

Like this the following files are included:

• hibernateSessionFactory.xml : The abstractSessionFactory bean, which
sets some default values for your custom session factory

• hibernateDataSource.xml : The dataSource bean using C3P0?

• hibernateDefaultBeans.xml : Some other default beans like

transactionManager and abstractDao that need no additional configuration
in general.

If you want to replace some of these beans, just use the
exclusiveConfigLocations property of ModuleApplicationContext to exclude a file,
and define your version of these beans.

You can then access Hibernate via the ConvenienceHibernateTemplate class.
See keyword dao of Reference-Database-Application for example usage.

Criteria transformation

This module includes a CriteriaTransformer? class that allows the transformation
of EL4J Query Objects (described in ModuleCore) to hibernate criteria. This is
useful if you want to use Hibernate to perform search queries which are based on

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 145 / 320
ELCA Informatique SA, Switzerland, 2009.

a QueryObject object. See keyword dao of Reference-Database-Application for
example usage.

Remark: The EL4J Query Objects API has been introduced to be independent
from the persistence technology (Hibernate or iBatis). Even if you only use
Hibernate now, it can be interesting to decouple your application from Hibernate
(e.g. in the client).

Generic Hibernate DAO

Refer to GenericDao

Hibernate validation support

This module also contains support for bean validation. Bean validation is
performed by specifying invariant constraints on the domain object model using
the validation annotations defined by the Hibernate Validator, which is part of the
Hibernate Annotations project. This is the way we recommend implementing
validations on objects. The goal is to define the invariant constraints only once

(on the domain object model), and to reuse them wherever the object is used
(also in the GUI/ web user interface).

The Hibernate Annotations reference documentation describes how validation
constraints are implemented on the domain object model and how domain objects
are validated.

Single bean properties can be validated using the pre-defined validation
annotations of the Hibernate Annotations project, which check that bean
properties respect different constraints (for example the @NotNull or the
@Range(min, max) annotations). In addition to applying these built-in validation
constraints, it is possible to perform custom bean validation. This can be achieved
by adding a custom validation method to the domain class which will be validated
and by annotating this method with the @AssertTrue annotation. It is the
responsibility of this validation method to specify the custom validation constraints
for the domain class in which it is defined. In such a method, it is for example
possible to verify that different properties of a domain object are consistent
between each other. The @AssertTrue annotation checks that this validation

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 146 / 320
ELCA Informatique SA, Switzerland, 2009.

method evaluates to true, which should only be the case if all the custom
constraints defined by that method evaluate to true.

The following example shows the usage of Hibernate's validation support and
illustrates how to perform custom bean validation:

public class Reference {

 private Date m_documentDate;

 private Date m_whenInserted;

 @NotNull

 public Date getDocumentDate() {

 return m_documentDate;

 }

 @NotNull

 public Date getWhenInserted() {

 return m_whenInserted;

 }

 /**

 * @return true if the insertion date is after the document's

creation date.

 */

 @AssertTrue

 public boolean areDateCorrect() {

 if (getDocumentDate() != null && getWhenInserted() != null)

{

 return (getDocumentDate().getTime() <=

getWhenInserted().getTime();

 } else {

 return true ;

 }

 }

}

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 147 / 320
ELCA Informatique SA, Switzerland, 2009.

In this example, we define validation constraints on the Reference domain object.
We use the built-in @NotNull annotation to express that both the documentDate and
the whenInserted properties must not be null. Custom validation, which can be
used in conjunction with the other validation annotations, is implemented in the
bean's areDateCorrect() method, which ensures that the reference's creation
date is an earlier date than its insertion date.

Make sure that any method where you use the annotat ion @AssertTrue is
null-pointer-save! Further do not repeat checks, as here, we just start the
check if both dates are not null. Else we let this test pass. Other tests will
fail instead and stop the save-process.

The validation of a bean (i.e. the verification of the constraints) is performed as
described in section 4.2 of the Hibernate Annotations reference documentation:
verification can either take place at the database schema level, or via the
Hibernate Validator's built-in Hibernate event listeners, or at the application level.
This applies for both the built-in validation annotations and the custom validations
defined in a validation method.

The RefDB demo application also contains an example illustrating bean validation.
The ch.elca.el4j.apps.refdb.dto.ReferenceDto domain object is annotated in a
similar way as the Reference bean in this documentation, and the
ch.elca.el4j.tests.refdb.ReferenceValidationTest shows how to perform
validation at the application level.

JPA Extension

How to use

Include classpath:scenario/dataaccess/jpa/*.xml instead of
classpath:scenarios/dataaccess/hibernate/*.xml .

The configuration files in the above location contain the following:

• jpaEntityManagerFactory.xml : The entityManagerFactory instead of the
SessionFactory

• jpaDataSource.xml : The dataSource like with the hibernate configuration

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 148 / 320
ELCA Informatique SA, Switzerland, 2009.

• jpaDefaultBeans.xml : The jpaHelper and the transactionManager

Entity Lifecycle
To persist, detach, merge and remove the entities use the jpaHelper or create
your own helper class. The states jpa works with are shown in the picture below.
The use of jpa differs from the usage of the hibernate dao.

• There is no longer a saveOrUpdate function. To add an entity to the
persistence context persist is used and merge to reattach it.

• persist or merge means not "save now", but put the entity into the
persistence context.

• Changes applied to a managed entity do not have to be saved explicitly to
the database. The entity will be automatically updated in the database after
a flush or commit .

• To force a immediate saving to the database use flush . This is usually not
necessary.

• The function merge returns the object as a managed entity. The "old" object is
still be detached .

• Check, if the entity is already managed or detached, using the function
contains .

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 149 / 320
ELCA Informatique SA, Switzerland, 2009.

Some examples can be found in the jpa tests of the application template called
refdb .

ConvenienceGenericJpaDao ?

There is a ConvenienceGenericJpaDao interface implemented by GenericJpaDao that
works analogously to the ConvenienceGenericHibernateDao . The differences
between the two are minimal, with the following exceptions:

• the Hibernate DAO provides find-methods for EL4J QueryObject and
Hibernate DetachedCriteria . The JPA DAO uses the QueryBuilder .

• the Hibernate DAO is part of the GenericDAO? interface hierarchy, the JPA
DAO is not.

• In order to stay close to the vanilla terminology, you should use persist()
and merge() instead of saveOrUpdate() in the JPA DAO

• The saveOrUpdate() from the JPA DAO corresponds to the
saveOrUpdateCopy() method in Hibernate, i.e. the object returned is not
necessarily the same as the saved one. You thus have to assign it again:

entity = dao.saveOrUpdate(entity);

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 150 / 320
ELCA Informatique SA, Switzerland, 2009.

References on JPA
• JPA Presentation

• JPA Implementation Patterns

Criteria Queries:

• Typesafe JPA

• Criteria Queries in JPA 2.0 and Hibernate

References
• HibernateGuidelines

• Java Persistence with Hibernate, Christian Bauer & Gavin King, Manning

• http://www.hibernate.org/

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 151 / 320
ELCA Informatique SA, Switzerland, 2009.

Documentation for module web

Purpose

Web Module of EL4J. It includes struts, servlet-api, some commons libraries and
a few own classes.

edit purpose

Features

The following features are included in this module:

• The ModuleWebApplicationContext. It decouples configuration location
pattern interpretation form the current classloader.

• Implementation of the SynchronizerToken. This is useful for preventing
duplicate form submissions. Further information under
http://www.javaworld.com/javaworld/javatips/jw-javatip136.html. You can
see an example of the Synchronizer Token in the
OldWebApplicationTemplate.

• Xml Tag Transformer. Escapes xml tags in order to display them properly
on web pages.

How to use

General configuration of the web module

The module web application context is used like its non-web counterpart
(ModuleApplicationContext). For a sample usage of the other features, please
refer to the web application template (the demo application).

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 152 / 320
ELCA Informatique SA, Switzerland, 2009.

Reference documentation for the Module-aware
application contexts

The ModuleWebApplicationContext resolves issues that arise with web container
class loaders. In contrast to standalone applications, web applications can't
provide their classpath through a command line parameter or through
environment parameters. The Servlet specification replaces the missing
parameter with Class-Path entries in the MANIFEST.MF. Unfortunately, they're not
respected by every servlet container.

The very same classloader issues appear also in environments other than web
containers. The ModuleApplicationContext resolves absolutely the same problems
using the same mechanisms. The following description applies to both application
contexts.

Concept

Each jar from an EL4J module contains a manifest file with its module's name, its
dependencies to other modules and a list of all configuration files it contains. The
ModuleWebApplicationContext searches for all manifest files that are in the
classpath, extracts their information and builds the complete module hierarchy.
Then it creates a list of all provided configuration files, preserving the modules'
hierarchy. The ordered list is used to fulfill any resource look-up queries.

In general, this resolves any problems with wildcard notation (e.g.
classpath*:mandatory/*.xml" : it's guaranteed, that all mandatory files of a module
A are loaded before them from module B, if B depends on A). Further, some
classloaders have problems recognizing jar files as jars and instead show them
as zip files. Spring's pattern resolvers work with jars only, running into troubles if a
jar is wrongly taken for a zip. Since the pattern resolver used together with the
ModuleWebApplicationContext works on the internal module structure only,
there's no dependency on the current environment's classloader.

The ModuleWebApplicationContext can resolve only files that are added to the
corresponding attribute in the manifest file. In general, this is just a subset of
resources that are loaded during the application's lifecycle. Hence our custom

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 153 / 320
ELCA Informatique SA, Switzerland, 2009.

pattern resolver that works on the internal module representation delegates each
unsatisfied request to the standard Spring resource loading mechanism.

So, this solution uses the same infrastructure as the one defined in the servlet
specification. However, the processing is done by EL4J, and hence doesn't
depend on any servlet container and their specific behavior.

ModuleDispatcherServlet
To simplify the usage of the ModuleWebApplicationContext, there's the
ModuleDispatcherServlet that configures a Spring DispatcherServlet. It behaves
absolutely the same as the one of Spring. Additionally, it allows defining two lists
of configuration files which are included and excluded respectively.

Note : You don't have to use any of them. Spring's DispatcherServlet configuration

style is still available.

Example configuration making use of the include / exclude feature:

 <servlet>

 <servlet-name>remotingtests</servlet-name>

 <servlet-class>

 ch.elca.el4j.web.context.ModuleDispatch erServlet

 </servlet-class>

 <load-on-startup>100</load-on-startup>

 <init-param>

 <param-name>inclusiveLocations</param-n ame>

 <param-value>WEB-INF/remotingtests-serv let.xml</param-value>

 </init-param>

 <init-param>

 <param-name>exclusiveLocations</param-n ame>

 <param-value>foobar.xml</param-value>

 </init-param>

 </servlet>

Without the need of the exclusive list (the standard DispatcherServlet's naming
convention is used, hence the benchmark-servlet.xml gets loaded in this context):

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 154 / 320
ELCA Informatique SA, Switzerland, 2009.

 <servlet>

 <servlet-name>benchmark</servlet-name>

 <servlet-class>

 ch.elca.el4j.web.context.ModuleDispatch erServlet

 </servlet-class>

 <load-on-startup>100</load-on-startup>

 </servlet>

ModuleContextLoader

There is also the possibility to declaratively configure and start up the
ModuleWebApplicationContext via servlet context parameters in the web.xml file.
The ch.elca.el4j.web.context.ModuleContextLoader class provides this
capability. This context loader is created by the
ch.elca.el4j.web.context.ModuleContextLoaderListene r class.

You have to configure the ModuleContextLoaderListener in the web.xml file as
follows:

<listener>

 <listener-class>

 ch.elca.el4j.web.context.ModuleContextLoade rListener

 </listener-class>

</listener>

When the web application starts up, this listener will execute the
ModuleContextLoader , which initializes and starts a ModuleWebApplicationContext
based on one or more servlet context parameters that are merged. You can
specify the following context parameters:

• inclusiveLocations (mandatory): specifies the configuration locations which
will be included in the application context

• exclusiveLocations (optional, defaults to null): specifies the configuration
locations which will be excluded from the application context

• overrideBeanDefinitions (optional, defaults to false): indicates whether
bean definition overriding is allowed in the application context

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 155 / 320
ELCA Informatique SA, Switzerland, 2009.

• mergeResources (optional, defaults to true): indicates whether the

resources retrieved by the configuration files section of the manifest files
should be merged with resources found by searching in the file system

A typical configuration example could look like this:

<context-param>

 <param-name>inclusiveLocations</param-name>

 <param-value>

 classpath*:mandatory/*.xml,

 classpath*:scenarios/db/raw/*.xml,

 classpath*:scenarios/dataaccess/hibernate/* .xml,

 classpath*:optional/interception/transactio nJava5Annotations.xml

 </param-value>

</context-param>

<context-param>

 <param-name>exclusiveLocations</param-name>

 <param-value>

 classpath*:scenarios/dataaccess/hibernate/ke yword-core-repository-

hibernate-config.xml

 </param-value>

</context-param>

Build system integration
We provide a hook task for the Maven build system that gathers all the needed
configuration information automatically and writes them into the manifest file. In
the default mode, it simply collects all files that are controlled by the resources
plugin.

TBD: correct the above link to the resource plugin to the new maven concept for
this. Check also if the content below is still valid.

Adding files manually
While adding files automatically to the manifest file is most of the time
comfortable, it's sometimes necessary to specify the list of files manually.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 156 / 320
ELCA Informatique SA, Switzerland, 2009.

TBD: how is this done with the Maven plugin?

Please check the javadoc of the ModuleApplicationContexts: there are some new
features to control the loading of classpath resources.

Limitations
• Our custom resource pattern resolver handles wildcard classpath

resources only, i.e. location patterns starting with classpath*: (with or
without a wildcard pattern in the part following). Any other location pattern
is resolved through delegation.

• Potentially, every response to a given request is incomplete, if answered by
the custom module pattern resolver. The pattern resolver delegates
unsatisfied requests only. Requests for which at least one resource is
found are not handled by Spring's pattern resolver. Specifying configuration
files manually may resolve the problem. See the earlier section on adding
files manually for details.

MANIFEST.MF configuration section format
Of course, the manifest file can also be written by hand. Here is the format of the
configuration section:

Add to the manifest of each module

1. the module's dependencies (Dependencies)

2. the list of all the configuration files it defines (Files)

3. the name of the module (actually the name of the jar file) (Module)

Example:

• 3 Modules: A,B,C

• B depend on A

• C depends on A

B contains b1.xml, b2.xml

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 157 / 320
ELCA Informatique SA, Switzerland, 2009.

C contains c.xml

A contains a.xml

The manifest of A contains

Name: config

Module: A

Files: a.xml

Dependencies:

The manifest of B contains

Name: config

Module: B

Files: b1.xml b2.xml

Dependencies: A

The manifest of C contains

Name: config

Module: C

Files: c.xml

Dependencies: A

Implementation Alternative: Idea
The resource pattern resolver delegates single-resource requests to one of
Spring's pattern resolvers. That's because the configuration file list contained in a
manifest file provides classpath-relative paths only. This paths could be made
absolute using the manifest file's path as prefix. This would resolve problems with
equally named resources. Note : loading all resources from the classpath using

the classpath*: prefix requires top-down processing of the module hierarchy
whereas loading of a single resource (i.e. using the classpath: prefix) bottom-up.
Not sure if it works in all environments.

Example Manifest file location:

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 158 / 320
ELCA Informatique SA, Switzerland, 2009.

 file:/C:/el4j/framework/lib/module-core_1.0.jar! /META-INF/MANIFEST.MF

Configuration files' prefix:

 file:/C:/el4j/framework/lib/module-core_1.0.jar! /

Resources
• ModuleWebApplicationContextToDo specifies the problem more

extensively

• ModuleWebApplicationContextToDoSpecification solution specification

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 159 / 320
ELCA Informatique SA, Switzerland, 2009.

Documentation for module
security

Purpose

The security module provides authentication and authorization for EL4J
applications. The core part of this module is based on Spring Security (formely
Acegi Security. Attribute-enabled interceptors are used to perform access
controls.

edit purpose

SSL certificate creation

For the convenient creation of SSL certificates (for CA, client and server), please
have a look inside the etc/openssl directory of the framework.

Features

Besides the Spring Security library, this module contains an
AuthenticationServiceContextPasser and an AuthenticationService which allows
the user to transparently log in to a server and transparently invoke the server's
methods. For a demonstration of this feature, please consult the module-security-
tests.

NT login demo
Refer to internal/applications/demos/nt_login . Be sure to read the readme file.

Basic User Admin GUI and components
ModuleBasicUserManagement

A limited security demo is in the JSF template
internal/applications/templates/jsf

A GUI demo with security
external/applications/templates/gui

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 160 / 320
ELCA Informatique SA, Switzerland, 2009.

Implicit context passing
Please refer to ModuleRemoting#ImplicitContextPassing . This can be used to
pass the security context with remote invocations (it's like a thread local that is
transported to the server (but not back!)).

NTLM support
NTLM allows to do single-sign-on with a browser application (the browser
automatically sends your windows credentials to the server). This works in IE, and
can be enabled for Firefox, use the property network.automatic-ntlm-auth.trusted-
uris (under URL about:config).

MSM / QKP have experience with this. Here is an email that has more info and a
helper class: RENtlmloginwithtomcat.msg.

Encrypt passwords that go over the wire
This features encrypts all Spring Security passwords that are sent over the wire
using remoting. For encryption a pre-shared symmetric key (AES, without any
salt) is used, which therefore does not protect against man-in-the-middle attacks.
As users often use the same or similar passwords (although they shouldn't) this
approach makes it is very hard just to sniff the network traffic and try the
password e.g. for the user's email account.

To enable password encryption do the following:

• Generate a symmetric key:

o cd external/framework/modules/security

o mvn exec:java

o Copy the generated key (including the trailing ==)

• Replace your default remoting context passer
AuthenticationServiceContextPasser by
SecureUsernamePasswordAuthenticationServiceContextP asser and set the
property "key". If you don't use implicit context passing yet, see
ModuleRemoting#ImplicitContextPassing. Here's an example:

<bean id="authenticationServiceContextPasser"

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 161 / 320
ELCA Informatique SA, Switzerland, 2009.

class="ch.elca.el4j.services.security.authenticatio n.SecureUsernamePassword

AuthenticationServiceContextPasser">

 <property name="implicitContextPassingRegistry" >

 <ref bean="implicitContextPassingRegistry"/ >

 </property>

 <property name="key" value="HERE_COMES_YOUR_KEY " />

</bean>

Block requests from unauthorized IP addresses
To allow requests only from a range of IP addresses add a dependency to
module-security and the following snippet into the web.xml:

<filter>

 <filter-name>IP Address Filter</filter-name>

 <filter-

class>ch.elca.el4j.services.security.filters.IPAddr essFilter</filter-class>

 <init-param>

 <param-name>ipAddresses</param-name>

 <param-value>operation.allowedIPAddresses</ param-value>

 </init-param>

</filter>

<filter-mapping>

 <filter-name>IP Address Filter</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

The list of allowed IP addresses is passed as system property
'operation.allowedIPAddresses' and contains a comma separated list of IP
addresses.

Example using jetty: mvn db:prepare jetty:run -

Doperation.allowedIPAddresses=127.0.0.1,142.31.2.26

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 162 / 320
ELCA Informatique SA, Switzerland, 2009.

Basic HTTP authentication via JNDI (i.e. LDAP)

See ExternalToolTomcat for Tomcat.

How to use

Please refer to the demo application and the Spring Security documentation for
now.

References
• SecurityGuidelines

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 163 / 320
ELCA Informatique SA, Switzerland, 2009.

Documentation for module
exception handling

Purpose

This module provides configurable exception handlers that allow separating the
exception handling from the actual business logic. There are two exception
handlers: a safety facade that handles technical exceptions for collections of
POJOs and a context exception handler that allows handling exceptions in
function of what context is active. These exceptions handlers complement the
EL4J exception handling guidelines.

edit purpose

Important concepts
EL4J supports two frameworks to handle exceptions, the Safety Facade and the
Context Exception Handler . Both handle exceptions of several beans and both

use exactly the same core framework. The former is intended to be used nearby a
service to handle implementation-specific and technical exceptions. Instead of
handling such abnormal exceptions in the business code, the handling of
abnormal exceptions is delegated to the safety facade. This simplifies the use of
the wrapped service, as one can concentrate on its core functionality. In addition,
it separates the concerns of its core business functionality and abnormal cases.
The latter context exception handler is used to handle exceptions in different
ways, depending on the current context (e.g. show errors in message boxes if in a
gui context or log them into a file if in server context). Both exception handler
frameworks can be used to build complex exception handler hierarchies
consisting of different risk communities, as described in the
ExceptionHandlingGuidelines.

Both exception handling frameworks are added to a project whenever they are
needed. The handlers are configured in Spring configuration files, where you just
change the names of the original beans and where you add new proxied versions
of them. This still allows accessing the bare beans, without going through an
exception handling facade, which is needed to build risk communities.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 164 / 320
ELCA Informatique SA, Switzerland, 2009.

As already mentioned, the context exception handler handles exceptions
according to the current context. It is set through a static method and is valid for
the thread's whole life or until it's set to another value. It's considered a mistake if
the context has not been set before the context exception handler treats an
exception, hence a MissingContextException (unchecked) is thrown.

How to use

Configuration

Both the safety facade and the context exception handler are configured with a
list of exception configurations. Each exception configuration associates a set of
exceptions with its exception handler (see below for more details on exception
handlers). The ExceptionConfiguration interface contains two methods, one for
checking whether the configuration is able to handle the given situation, the other
returns the configuration's exception handler. There are two default
ExceptionConfiguration implementations:

• ClassExceptionConfiguration just checks the caught exception's type.

• MethodNameExceptionConfiguration checks the caught exception's type
as well as the name of the method that threw it.

To configure a safety facade, one configures a list of exception configurations
(please refer to the example below).

A context exception handler is configured with a map: The key of the map
represents the context, the value the context's list of exception configurations (the
format of the list of exception configurations (for each context) is the same as
above).

Exception handlers

There are a number of exception handlers covering the most common cases:

• RethrowExceptionHandler forwards the exception to the caller.

• SimpleLogExceptionHandler logs the exception and the invocation
description that raised it on trace level.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 165 / 320
ELCA Informatique SA, Switzerland, 2009.

• SimpleExceptionTransformerExceptionHandler transforms the caught

exception into the one specified by an exception class. The handler tries to
fill it with the original exception's message, cause and stack trace.

• SequenceExceptionHandler allows declaring a list of exception handlers

which are invoked one after another until one succeeds (=does not throw
another exception). If all fail it returns the last caught exception.

• RetryExceptionHandler retries the very same invocation several times.

The last caught exceptoin is rethrown if all retries didn't succeed.

• RoundRobinSwappableTargetExceptionHandler retries the invocation

on different targets, that is exchanged each time the current one fails. The
handler modifies the proxy too, let it use the exchanged target for new
invocations. This allows automatically reconfiguring the system at runtime
(e.g. change the data source if the current one isn't reachable anymore).

All of them extend the AbstractExceptionHandler that provides a logging
abstraction which allows users to set whether proxy generated log messages are
registered as if they're coming form the exception handler (default) or whether
they are reported as if they're coming from the proxied class.

Additionally, there are a number of abstract handlers making it easier to build
custom strategies. The AbstractReconfigureExceptionHandler for example

helps to reconfigure a bean (e.g. making it use another collaborator).

Example 1: Safety Facade for one Bean
This is the simplest form of a safety facade: The actual bean is renamed, an
exception configuration is provided and the safty facade is created. There are no
changes in the Java code, as long as no unsafe bean access is needed.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dt d">

<beans>

 <bean id="unsafeA"

class="ch.elca.el4j.tests.services.exceptionhandler .A"/>

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 166 / 320
ELCA Informatique SA, Switzerland, 2009.

 <bean id="A"

class="ch.elca.el4j.services.exceptionhandler.Safet yFacadeFactoryBean">

 <property name="target"><ref local="unsafeA "/></property>

 <property name="exceptionConfigurations">

 <list>

 <bean

class="ch.elca.el4j.services.exceptionhandler.Class ExceptionConfiguration">

 <property name="exceptionTypes" >

 <list>

 <value>java.lang.Arithm eticException</value>

 </list>

 </property>

 <property name="exceptionHandle r">

 <bean

class="ch.elca.el4j.services.exceptionhandler.handl er.SimpleLogExceptionHan

dler">

 <property

name="useDynamicLogger"><value>true</value></proper ty>

 </bean>

 </property>

 </bean>

 </list>

 </property>

 </bean>

</beans>

Example 2: Context Exception Handler
The context exception handler is initialized the same way as the safety facade.
However, there is an additional indirection (the map) to setup different policies for
each context.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dt d">

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 167 / 320
ELCA Informatique SA, Switzerland, 2009.

<beans>

 <bean id="unsafeA"

class="ch.elca.el4j.tests.services.exceptionhandler .AImpl"/>

 <bean id="A"

class="ch.elca.el4j.services.exceptionhandler.Conte xtExceptionHandlerFactor

yBean">

 <property name="target"><ref local="unsafeA "/></property>

 <property name="policies">

 <map>

 <entry key="gui">

 <list>

 <bean

class="ch.elca.el4j.services.exceptionhandler.Class ExceptionConfiguration">

 <property name="excepti onTypes">

 <list>

<value>java.lang.ArithmeticException</value>

 </list>

 </property>

 <property name="excepti onHandler">

 <bean

class="ch.elca.el4j.tests.services.exceptionhandler .MessageBoxExceptionHand

ler"/>

 </property>

 </bean>

 </list>

 </entry>

 <entry key="batch">

 <list>

 <bean

class="ch.elca.el4j.services.exceptionhandler.Class ExceptionConfiguration">

 <property name="excepti onTypes">

 <list>

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 168 / 320
ELCA Informatique SA, Switzerland, 2009.

<value>java.lang.ArithmeticException</value>

 </list>

 </property>

 <property name="excepti onHandler">

 <bean

class="ch.elca.el4j.tests.services.exceptionhandler .LogExceptonHandler">

 <property

name="useDynamicLogger"><value>true</value></proper ty>

 </bean>

 </property>

 </bean>

 </list>

 </entry>

 </map>

 </property>

 </bean>

</beans>

Corresponding Java snippet (Note : set the context to a valid value. Otherwise, a

MissingContextException (unchecked) is thrown.):

A m_a = getA();

ContextExceptionHandlerInterceptor.setContext("gui"); // set the current

thread's context

m_a.div(1, 0); // handles any exceptions using the gui policy

ContextExceptionHandlerInterceptor.setContext("batc h"); // set the current

thread's context

m_a.div(1, 0); // handles any exceptions using the batch policy

m_a.div(1, 0); // handles any exceptions using the batch policy

Example 3: RoundRobinSwappableTargetExceptionHandle r
This example shows the round robin swappable target exception handler. Note

the handler requires a HotSwappableTargetSource in order to reconfigure the proxy.

<?xml version="1.0" encoding="ISO-8859-1"?>

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 169 / 320
ELCA Informatique SA, Switzerland, 2009.

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dt d">

<beans">

 <bean id="unsafeA"

class="ch.elca.el4j.tests.services.exceptionhandler .A"/>

 <bean id="B" class="ch.elca.el4j.tests.services .exceptionhandler.B"/>

 <bean id="swapper"

class="org.springframework.aop.target.HotSwappableT argetSource">

 <constructor-arg><ref local="unsafeA"/></co nstructor-arg>

 </bean>

 <bean id="A"

class="ch.elca.el4j.services.exceptionhandler.Safet yFacadeFactoryBean">

 <property name="target"><ref local="swapper "/></property>

 <property name="exceptionConfigurations">

 <list>

 <bean

class="ch.elca.el4j.services.exceptionhandler.Metho dNameExceptionConfigurat

ion">

 <property name="methodNames">

 <list>

 <value>concat</value>

 </list>

 </property>

 <property name="exceptionTypes" >

 <list>

<value>java.lang.UnsupportedOperationException</val ue>

 </list>

 </property>

 <property name="exceptionHandle r">

 <bean

class="ch.elca.el4j.services.exceptionhandler.handl er.RoundRobinSwappableTa

rgetExceptionHandler">

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 170 / 320
ELCA Informatique SA, Switzerland, 2009.

 <property name="swapper "><ref

local="swapper"/></property>

 <property name="targets ">

 <list>

 <ref local="uns afeA"/>

 <ref local="B"/ >

 </list>

 </property>

 </bean>

 </property>

 </bean>

 </list>

 </property>

 </bean>

</beans>

Using a ProxyFactoryBean and an explicit interceptor to do the same work as the
SafetyFacadeFactoryBean above would look like this

<bean name="safetyFacade"

class="ch.elca.el4j.services.exceptionhandler.Safet yFacadeInterceptor">

 <property name="exceptionConfigurations">

 <list>

 <ref local="roundRobinSwappableTargetEx ceptionConfiguration"/>

 </list>

 </property>

</bean>

<bean id="A" class="org.springframework.aop.framewo rk.ProxyFactoryBean">

 <property name="targetSource"><ref local="swapp er"/></property>

 <property name="interceptorNames">

 <list>

 <idref bean="safetyFacade"/>

 </list>

 </property>

</bean>

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 171 / 320
ELCA Informatique SA, Switzerland, 2009.

Example 4: Using several exception handlers, each
configured by a separate exception configuration
Several exception handlers are configured by multiple exception configurations.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dt d">

<beans>

 <bean id="unsafeA"

class="ch.elca.el4j.tests.services.exceptionhandler .AImpl"/>

 <bean id="A"

class="ch.elca.el4j.services.exceptionhandler.Safet yFacadeFactoryBean">

 <property name="target"><ref local="unsafeA "/></property>

 <property name="exceptionConfigurations">

 <list>

 <bean

class="ch.elca.el4j.services.exceptionhandler.Class ExceptionConfiguration">

 <property name="exceptionTypes" >

 <list>

 <value>java.lang.Arithm eticException</value>

 </list>

 </property>

 <property name="exceptionHandle r">

 <bean

class="ch.elca.el4j.services.exceptionhandler.handl er.SequenceExceptionHand

ler">

 <property name="excepti onHandlers">

 <list>

 <bean

class="ch.elca.el4j.services.exceptionhandler.handl er.SimpleLogExceptionHan

dler">

 <property

name="useDynamicLogger"><value>true</value></proper ty>

 </bean>

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 172 / 320
ELCA Informatique SA, Switzerland, 2009.

 <bean

class="ch.elca.el4j.services.exceptionhandler.handl er.RetryExceptionHandler

">

 <property

name="retries"><value>5</value></property>

 <property

name="sleepMillis"><value>0</value></property>

 <property

name="useDynamicLogger"><value>true</value></proper ty>

 </bean>

 <bean

class="ch.elca.el4j.services.exceptionhandler.handl er.SimpleExceptionTransf

ormerExceptionHandler">

 <property

name="transformedExceptionClass">

<value>java.lang.RuntimeException</value>

 </property>

 </bean>

 </list>

 </property>

 </bean>

 </property>

 </bean>

 <bean

class="ch.elca.el4j.services.exceptionhandler.Class ExceptionConfiguration">

 <property name="exceptionTypes" >

 <list>

<value>java.lang.UnsupportedOperationException</val ue>

 </list>

 </property>

 <property name="exceptionHandle r">

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 173 / 320
ELCA Informatique SA, Switzerland, 2009.

 <bean

class="ch.elca.el4j.tests.services.exceptionhandler .ReconfigureExceptionHan

dler">

 <property name="c"><ref local="C"/></property>

 </bean>

 </property>

 </bean>

 </list>

 </property>

 </bean>

</beans>

References
1. Moderne Softwarearchitektur -- Umsichtig planen, robust bauen mit

Quasar, Johannes Siedersleben, dpunkt.verlag, 2004, ISBN 3-89864-292-5

Internal design

Each secured bean is hidden behind a proxy that wraps each invocation into a
try-catch block. If the invocation that is delegated to the bare bean throws an
exception, the facade looks up an appropriate exception handler and delegates
the handling to it. The interceptors are instantiated with one of the two
convenience factories, the
ch.elca.el4j.services.exceptionhandler.SafetyFacade FactoryBean and the
ch.elca.el4j.services.exceptionhandler.ContextExcep tionHandlerFactoryBean .
These two factories create the interceptor transparently. They extend Spring's
AdvisedSupport and simply add the exception handling interceptor. Using the
ProxyFactoryBean provides access to the interceptor and allows adding additional
interceptors (however this is not recommended since the exception handler
interceptor should wrap the complete unsafe bean).

Important Although it's possible to use Spring's auto proxy features, it's not

recommended because it hides the unsafe bean, making it impossible to build risk
communities.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 174 / 320
ELCA Informatique SA, Switzerland, 2009.

There are three common properties, independent of whether you use a safety
facade or a context exception handler and independent from the way you create
the proxies (convenience factory or ProxyFactoryBean):

Default value Property Description

Safety
Facade

Context
Exception
Handler

defaultBehaviourConsume true consumes any exceptions that
are not handled by an exception

handler. false rethrows unhandled
exceptions to the caller.

true true

forwardSignatureExceptions true forwards any exceptions which
are defined in the invoked method's
signature. false forces to handle
these exceptions by the handlers

too.

true true

handleRTSignatureExceptions Declares whether unchecked
exceptions that are listed in a
method's signature should go

through an exception handler or
whether they are forwarded to the
caller. true for handle, false for

forward.

true true

Context Exception Handler
The ContextExceptionHandlerInterceptor uses a ThreadLocal to store the current
context. There's no mechanism that resets the context transparently, preventing
pooled threads to use a wrong context. Setting the appropriate context is the
programmer's responsibility.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 175 / 320
ELCA Informatique SA, Switzerland, 2009.

Documentation for module JMX

Purpose

The module jmx supports developpers in understanding spring applications by

providing an automatic (implicit) view of the currently loaded spring beans and
their configurations. This becomes even more interesting as Spring (and EL4J)
allow splitting configuration information in many files, making it sometimes hard to
figure out what config applies. For the impatient: JmxModuleForTheImpatient

edit purpose

Introduction to Java management eXtensions
(JMX)

The follwing picture shows the components of JMX:

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 176 / 320
ELCA Informatique SA, Switzerland, 2009.

The central part of JMX is the MBean Server. Managed Beans, special Java
objects that a developper wants to have controlled during runtime, are registered
at the MBean Server. These Manged Beans or Mbeans are typically proxies for
other components in the JVM one wants to monitor. These MBeans can be
manipulated via JMX at runtime, i.e. their attributes can be read and edited and
their methods can be invoked. Finally there are connectors that allows to access
MBeans from remote.

Feature overview

We provide 2 ways to publish Spring Mbeans to JMX:

• Implicit publishing: publish all spring beans and their config automatically
(we use the ModuleApplicationContext for this)

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 177 / 320
ELCA Informatique SA, Switzerland, 2009.

• Explicit publishing (as Spring provides it normally)

The following class diagram illustrates the mbeans we publish implicitly:

Besides all the spring beans, the jmx package also creates a JVM proxy in order

to display the system properties etc. Furthermore, each ApplicationContext will be
mirrored by a proxy that also provides links to all the loaded beans in it.

Usage

Spring/JDK versioning issue

The usage of the module depends on the used Spring and JDK versions. By
default the module works with Spring 1.2 and JDK 1.4.2.

Spring versions 1.1 <-> 1.2

Spring supports JMX since version 1.2. If you are using Spring 1.1, you have to
include a library with the missing files. This can be done by adding the following
dependency in the module.xml file of the JMX module:

 <dependency jar="spring-jmx-1.1.4.jar"/>

Difference in module-jmx:

Refactoring of org.springframework.jmx.JmxMBeanAdapter (Spring 1.1 extension)
into org.springframework.jmx.export.MBeanExporter (Spring 1.2). Therefore you
have to adapt the beans.xml as is described at Editing an MBean by replacing the
corresponding class name. Everything else remains unchanged.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 178 / 320
ELCA Informatique SA, Switzerland, 2009.

JDK versions 1.4.2 <-> 1.5

Since JDK 1.5, JMX is supported. If you are using JDK 1.5, you have to exclude
the following 4 libraries in the module.xml , i.e. deleting these lines.

 <dependency jar="jmxremote-1.4.2.jar"/>

 <dependency jar="jmxremote_optional-1.4.2.jar"/>

 <dependency jar="jmxri-1.4.2.jar"/>

 <dependency jar="jmxtools-1.4.2.jar"/>

There is no difference in using the JMX module.

Basic Configuration (implict publication)

The JMX package has to be included in the build path of your project which can

be achieved by setting a dependency in your project to the module-jmx. First of all
you need the jmx.xml which you can find at mandatory/jmx.xml . If you load the
Application Context with one of your config locations equal to
classpath*:mandatory/*.xml , then jmx.xml is loaded.

Here is a possible configuration file jmx.xml :

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dt d">

<beans>

 <bean id="mBeanServer"

class="ch.elca.el4j.services.monitoring.jmx.MBeanSe rverFactoryBean">

 <property name="defaultDomain">

 <value>foobar1</value>

 </property>

 </bean>

 <bean id="jmxLoader"

class="ch.elca.el4j.services.monitoring.jmx.Loader" >

 <property name="server">

 <ref bean="mBeanServer"/>

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 179 / 320
ELCA Informatique SA, Switzerland, 2009.

 </property>

 </bean>

</beans>

• The bean mBeanServer creates a MBeanServer on the defined

defaultDomain . Since the MBeanServerFactoryBean ensures that there is
only one MBeanServer per domain, you can register as many
ApplicationContexts at the same MBeanServer as you want, or easily
assign each ApplicationContext a different MBeanServer by defining an
unique domain for each MBeanServer. If you do not define this property,
the MBeanServer on the domain "defaultDomain" will be taken.

• The bean jmxLoader defines the loader which is responsible for setting up
the whole JMX world.

Connector

If you want to use JMX in a project, then you have to define what kind of

connector you want to set up. At the moment, EL4J provides a HtmlAdapter and a
JMXConnector.

HtmlAdapter

The bean htmlAdapter is a HTTP connector that allows observing the MBean
Server of the property mbeanServer . This adapter is installed by default . The

page can be called with http://localhost:9092 . If no port is defined, the default
one is 9092. The Html Adapter is defined as follows:

<bean id="htmlAdapter" class="ch.elca.el4j.jmx.Html AdapterFactoryBean">

 <property name="mbeanServer">

 <ref bean="mBeanServer"/>

 </property>

 <property name="port">

 <value>9092</value>

 </property>

</bean>

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 180 / 320
ELCA Informatique SA, Switzerland, 2009.

JmxConnector

The bean jmxConnector is a JMX connector based on the JSR-160 jmxmp
protocol. Any client tool able to handle this protocol can be used to work with this
MBeans. One such tool is MC4J. The bean definition provided is the following:

<bean id="jmxConnector"

class="org.springframework.jmx.support.ConnectorSer verFactoryBean">

 <property name="server">

 <ref bean="mBeanServer"/>

 </property>

 <!-- This is the default URL anyway -->

 <property name="serviceUrl">

 <value>service:jmx:jmxmp://localhost:9876</va lue>

 </property>

</bean>

Note: This class is only available as of Spring 1.2. This connector is optional (is it
in the optional conf directory).

Example with one ApplicationContext

Here is a possible Test Class that uses jmx :

public class TestClass {

 public static void main(String[] args) {

 ApplicationContext ac = new ClassPathXmlApp licationContext(new

String[] {"classpath*:mandatory/*.xml", "classpath: app/beans.xml"});

 System.out.println("Waiting forever...");

 try {

 Thread.sleep(Long.MAX_VALUE);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 181 / 320
ELCA Informatique SA, Switzerland, 2009.

 }

}

Configuration (explicit publication)

If you want to edit fields or invoke operations of a spring bean, e.g. on the bean
Foo1 , then you have to explicitly register it via mBeanExporter . The automatically
created proxies for Spring beans do not allow editing their fields. The beans.xml
configuration file could look like this:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dt d">

<beans>

 <import resource="classpath:optional/htmlAdapter .xml"/>

 <bean id="mBeanExporter"

class="org.springframework.jmx.export.MBeanExporter "

 depends-on="mBeanServer">

 <property name="beans">

 <map>

 <entry key="MBean:name=Foo1">

 <ref bean="Foo1"/>

 </entry>

 </map>

 </property>

 <property name="server">

 <ref bean="mBeanServer"/>

 </property>

 </bean>

 <bean id="Foo1" class="ch.elca.el4j.test.Foo1">

 <property name="fullName">

 <value>foo</value>

 </property>

 </bean>

</beans>

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 182 / 320
ELCA Informatique SA, Switzerland, 2009.

In the bean mBeanExporter you can register which beans you want to expose as
MBeans, i.e. you want to be able to modify. In this example, bean Foo1 will be
exposed. The property server of mBeanExporter has to be set to the mBeanServer
bean (which is loaded via classpath*:mandatory/jmx.xml). You can define as
many mBeanExporters as you want, but do not forget to give each mBeanExporter
bean in the same ApplicationContext a different name.

Important: The following Naming Convention has to be preserved regarding the
property beans : The key entry has to be "MBean:name="+ beanName. Each
SpringBean contains a link to its MBean if there is one.

By directing your browser to http://localhost:9092 , you get the following view:

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 183 / 320
ELCA Informatique SA, Switzerland, 2009.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 184 / 320
ELCA Informatique SA, Switzerland, 2009.

As you can see, the module-jmx created a proxy bean called

"SpringBeanX:name=beanName" where X is a static counter. In the domain
"MBean", you can find all the MBeans that you have registered via jmxAdapter ,
which is now called mBeanExporter .

Example with more than one ApplicationContext

If more than one ApplicationContext is loaded, then you have two possibilities:

• If you want to register another ApplicationContext at the same mBeanServer ,

then you have to choose the same defaultDomain as the other Application
Context since the domain of the MBean Server actually defines the MBean
Server.

• If you want to register another ApplicationContext at a different
mBeanServer , then you have to follow these two steps:

o Override the defaultDomain property of the mBeanServer bean by the

org.springframework.beans.factory.config.PropertyOv errideConfig

urer for example with the entry mBeanServer.defaultDomain=foobar2 .

o The connector tho this MBean Server has to use a non-used port,
e.g. 9093 .

Implemented Features

There are a lot of MBeans already implemended and published. Here only a few
examples are shown. The best way to find out more about the implemented
beans is to browse yourself through them!

JVM-Monitor
The JVM-Monitor MBean is published under the domain 'JVM'. It contains
important information about the current JVM, such as which application context is
loaded, values of the system properties and properties of the currently running
threads (see screen shots below).

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 185 / 320
ELCA Informatique SA, Switzerland, 2009.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 186 / 320
ELCA Informatique SA, Switzerland, 2009.

Log4jConfig ?
The Log4jConfig? MBean is published under the domain 'JVM'. It shows
information about the loaded loggers. Furthermore it allows change of the level of
loggers. Furthermore it can also generate XML configuration code of logger level
changes made during a session (see screen shots below).

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 187 / 320
ELCA Informatique SA, Switzerland, 2009.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 188 / 320
ELCA Informatique SA, Switzerland, 2009.

Some available features:

• The 'changeLogLevel(category , level)' method allows to change the log
level of a certain category logger. To see the log level of a category, the
method 'showLogLevel(category)' can be used.

• The 'RootLoggerLevel' property allows to change the level of the root
logger.

• The 'showLogLevelCache' method returns an XML string, which represents

all the logger level changes made through the methods 'changeLogLevel'
or property 'RootLoggerLevel' to the logger levels. The output string is
suitable for copy-pasting into a Log4j.xml configuration file (see output in
screen shot above).

• Normally appenders to loggers are specified in the Log4j.xml file. But
sometimes its quite handy to be able to add/remove appenders for certain
loggers, without having to shutdown the application. To enable this
functionality, four methods are implemented: The 'AvailableAppendersList'
property shows a list of appenders (appenderName and reference to
appenderObject), which are available for attachment to a logger. The
'addAppender(category , appenderName)' method allows to attach an
appender (which is listed in the 'AvailableAppendersList' property), to a
logger category. The 'removeAppender(category , appenderName)'

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 189 / 320
ELCA Informatique SA, Switzerland, 2009.

disattaches an appender from a logger category. For seeing, which
appenders are connected to a logger the method
'showAppenders(category)' can be used. The appenders which are
available ('AvailableAppendersList' property), are loaded from a bean with
the name 'log4jJmxLoader' during the initialization of the application. The
'log4jJmxLoader' bean and appenders can be instanciated as follows:

 <bean id="log4jJmxLoader"

class="ch.elca.el4j.services.monitoring.jmx.Log4jJm xLoader">

 <property name="appenders">

 <map>

 <entry>

 <key>

 <value>nullAppender</value>

 </key>

 <ref bean="nullApp" />

 </entry>

 </map>

 </property>

 </bean>

 <bean id="nullApp" class="org.apache.log4j.varia .NullAppender" />

The 'Log4jJmxLoader' class has a hashmap property 'appenders'. The key of this
hashmap is the name of the appender bean (the appenderName as shown in the
'AvailableAppendersList' property). The hashmap value is an appender bean.

Spring Beans
Spring beans are published under the domain 'SpringBean'. Among other
properties, it can be found out if the spring bean is proxied, which interceptors it
has, the application context, etc.

JDK 1.5 Standard MBeans
If JMX is running under a JRE verion 1.5 or higher, automatically the JDK 1.5
MMBeans are published under the domain 'java.lang'. These beans give

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 190 / 320
ELCA Informatique SA, Switzerland, 2009.

information about garbadge collection, memory management, threads, operating
system, etc.

Patch

The original 'jmxtools-1.4.2.jar' jar-file from Sun contained code, which
instanciated two threads, which were not started as deamon threads. The
problem with this approach was, that these two threads remained active, also
after the main application thread was finished. Therefore these two threads
hindered the JVM from beeing shut down. This 'bug' was localized in the
'com.sun.jdmk.comm' package(classes 'CommunicatorServer' and
'HtmlRequestHandler'). The 'HtmlRequestHandler' class was patch directly, by
setting the thread to deamon, before starting it. The 'CommunicatorServer' class
was patched in its subclass 'HtmlAdaptorServer', because the source code of
'CommunicatorServer' was not available to us. The patched jar-file was named
'jmxtools-1.4.2_deamon_patch.jar'.

For the time being the pached jmxtools has been removed from the module-jmx
as the patch did not initialize the CommunicatorServer properly. The created thread
wasn't stored and therefore the method stop led to a NPE. The original problem
should be solved now as the HtmlAdapterFactoryBean implements additionally a
destroy method, which causes the HtmlAdaptorServer to stop. -- PhilippeJacot - 21
Dec 2006

References
• Further information regarding JMX can be found under

http://java.sun.com/products/JavaManagement/index.jsp.

• JmxModuleForTheImpatient shows how easily you can use this in your
applications.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 191 / 320
ELCA Informatique SA, Switzerland, 2009.

Documentation for module
TcpForwarder

Purpose

The TcpForwarder module helps to test network failures or connection problems
at runtime by controlling TCP connections that can be switched on / off between
the source and the destination.

Limitations

The TCP forwarder does not work with oracle and probably other databases that
provide load balancing. The problem is that during the first connection to the
oracle database server it tells the client which server and port to use. Afterwards,
the client connects directly to the given server and therefore bypasses the
forwarder.

Important concepts

The TCP forwarder represents a service intended to forward TCP traffic directed
to a specific port. The TCP forwarder controls connections between a source and
a destination and is able to switch them on / off on demand (either using a simple
user interface or programmatically). Therefore, the original application has to
switch its destination port, e.g. the port connected to a database, to the input port
of the TCP forwarder.

The following picture shows how TCP traffic is forwarded from an application's
data access layer to a database:

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 192 / 320
ELCA Informatique SA, Switzerland, 2009.

How to use

Command line user interface to switch TCP connectio ns
on or off

EL4J provides a simple user interface to switch on/off TCP connections called
TCPForwarderTool.

Parameters (tbd in code)

• Input Port: The TCP forwarder's input port - your application has to switch
its destination port to this port to be able to use the TCP forwarder

• Destination Port: The TCP forwarder's target port, which has to be your
application's original destination port

• Destination URL (optional)

After startup, the input and destination Ports are connected: the TCP forwarder
listens on the input port and forwards all traffic to the destination port.

Commands

Once started, you can control the TCP forwarder using console commands:

• '1' to unplug the connection between input port and destination port

• '2' to restore the connection between input port and destination port

• '3' to exit

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 193 / 320
ELCA Informatique SA, Switzerland, 2009.

Notes

• Don't forget to switch the destination port of your application to the input
port of your TCP forwarder.

Programmatically halting and resuming network
connectivity

It is also possible to programmatically control network connectivity by using the
TCP forwarder's elementary functions directly in code. An example is presented in
the automated tests (using JUnit or WebTests with JWebUnit) of the
tcp_forwarder-tests module.

Code configuration

Import libraries:

import java.net.Inet4Address;

import java.net.InetSocketAddress;

import java.net.SocketAddress;

import ch.elca.el4j.tcpred.TcpInterruptor;

// only needed for JWebUnit tests

import net.sourceforge.jwebunit.TestingEngineRegist ry;

import net.sourceforge.jwebunit.WebTestCase;

Set up TCP forwarder:

• Forwarding from INPUT_PORT to DEST_PORT:

TcpInterruptor ti = new TcpInterruptor(INPUT_PORT, DEST_PORT);

• Forwarding from INPUT_PORT to DEST_URL:DEST_PORT:

SocketAddress target = new

InetSocketAddress(Inet4Address.getByName(DEST_URL), DEST_PORT);

TcpInterruptor ti = new TcpInterruptor(INPUT_PORT, target);

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 194 / 320
ELCA Informatique SA, Switzerland, 2009.

Switch on / off connections

• Cut a connection: ti.unplug();

• Restore a connection: ti.plug();

Demonstration code

Please refer to the tests for this module here:
http://el4j.svn.sourceforge.net/viewvc/el4j/trunk/el4j/framework/tests/tcp_forwarde
r/java/ch/elca/el4j/tcpred/tests/TestDB.java?revision=628&view=markup

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 195 / 320
ELCA Informatique SA, Switzerland, 2009.

Documentation for module Light
Statistics

Purpose

The module lightStatistics allows setting up performance measurements very

easily.
edit purpose

Important concepts
This module uses a simplified version of the Spring performance interceptor to
gather execution times.

Monitoring strategies
• JMX: Allows querying performance measurements via JMX

o HTML adapter : Provides a simple web based JMX interface
available by default at http://localhost:9092.

o JMX connector : activates the JMX connector to allow JMX

conformant viewer to query data.

• JAMon admin jsp : The JAMon admin jsp is deployed along with the web

application (in fact, the jsp file is always provided but only usable within a
web application server).

How to use

Configuration
Using either the JAMon admin jsp within a web application container or the JMX
HTML adapter, you don't have to do anything except adding the dependency to
this module to your project definition. By default, all beans are advised by the
measurement interceptor. The set can be limited to a particular name pattern
using Spring's configuration override facilities.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 196 / 320
ELCA Informatique SA, Switzerland, 2009.

Demo
A demo module named module-light_statistics-demos is provided. It shows

how to use the JMX HTML adapter in a stand-alone application.

How to set up the module-light_statistics for the r ef-db
sample application
This example shows how to use the performance monitor in the red-db sample
application.

TBD: the following needs to be adapted to how this is done with maven:

binary-modules.xml
Add the following two lines to the binary-modules.xml file that is in the refdb's root
directory.

<attribute name="binrelease.version.module-light_st atistics" value="1.0"/>

<attribute name="binrelease.version.module-jmx" val ue="1.0"/>

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 197 / 320
ELCA Informatique SA, Switzerland, 2009.

project.xml
Add the following dependency to the refdb-web module definition:

<dependency module="module-light_statistics">

 <mapping target="jmx"/>

</dependency>

If you just want to use the admin jsp file without the JMX support, then replace the
mapping target jmx with web (the jsp file is always provided, but runs in a web
application environment only). Doing so, the lines you have to insert look like this:

<dependency module="module-light_statistics">

 <mapping target="web"/>

</dependency>

Limit the set of interecepted beans
Spring allows overriding configurations in properties files. Limiting the set of
intercepted beans makes use of this feature. The key in the properties file is
lightStatisticsMonitorProxy.beanNames . More details about how to use spring's
configuration features can be found under the PropertyConfiguration topic.

Important : In order to get the ref-db web application run with this module you

have to limit the set of advised beans (there are some beans that are not
advisable)! e.g. use this in your override.properties file:

lightStatisticsMonitorProxy.beanNames=reference*

and use the following bean definition:

<bean id="propsOverride"

class="org.springframework.beans.factory.config.Pro pertyOverrideConfigurer"

>

 <property name="locations">

 <value>classpath:mandatory/override.propert ies</value>

 </property>

</bean>

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 198 / 320
ELCA Informatique SA, Switzerland, 2009.

Notice: both files, the override.properties and the bean definition can be added
to the ref-db web's mandatory folder to be loaded automatically.

FAQ
• I got exceptions that Spring can not inject some dependencies. Without the

module-light_statistics, everything runs nicely.

o Maybe there are some classes that cannot be advised. Use the

lightStatistics-override.properties to specify the beans to
advise, as described here.

References
• JAMon web site http://www.jamonapi.com/

• Detailed statistics service of EL4J

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 199 / 320
ELCA Informatique SA, Switzerland, 2009.

Documentation for module
Detailed Statistics

Purpose

The detailed statistics module measures the duration of service invocations via
interceptors and makes these measures and their call-graph available via a
sequence diagram in SVG.

edit purpose

Important concepts

This package includes: (1) a measure interceptor that measures invocation times
that are stored by (2) the measurement collector service. Finally (3) a statistics
analyzer service allows analyzing the data collected and dump it e.g. to CSV
(Excel) or a sequence diagram picture (png) files. Alternatively it is also possible
to measure the times of other events than service invocations by calling the
measurement collector service via its API.

What can be measured?

Any spring service invocation can be measured. Measures can even be made
over JVM-boundaries: the ID of the measure is then exchanged via the implicit
context passing of EL4J.

Potentially anything can be measured, as one can explicitly call the API of the
mesurement collector service manually.

Description of the attributes of a measurement
To identify each measure/sub-measure corresponding to a same end-to-end
measure, the following attributes are defined:

• a measure ID , that must be different for every end-to-end measure and

which is composed of machine name and invocation time,

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 200 / 320
ELCA Informatique SA, Switzerland, 2009.

• a sequence number which corresponds to the call-level. As beans can call

several other beans, the sequence number depth increases for each sub-
bean,

• the time when measure started, which must be used to reorder the
measures done on the server.

Other attributes are allowed to identify :

• the measured component ID ,

• the type of the measured component,

• the duration of the measure (in milliseconds).

How to use

Configuration

You need to add a dependency on the detailed statistics module. Then you state
what beans you want to measure by either providing them explicitly with a Spring
proxy or configuring an auto-proxy, that adds all beans to the measurement if they
are not explicitly excluded. (Remark: we are also considering a JDK 1.5
annotation that selects whether the performance of the method shall be tracked.)

How to get the statistics information via JMX

The most convenient access to the detailed statistics information is via the JMX
interface. On the MBean of the detailed statistics tool
(detailedStatisticsReporter), you can get various information:

• The list of all recent measure IDs (via the method showMeasureIDTable)

• All measures corresponding to one measure ID in a CSV file (comma
separated excel file). For this, you use the method createCSVFile . The first
argument is the name of the file, the second argument is the measure ID.
Refer to showMeasureIDTable (see line above) for a list of available measure
IDs. At the moment, this file is written on the machine that runs the JMX
HTTP server.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 201 / 320
ELCA Informatique SA, Switzerland, 2009.

• All measures corresponding to one measure ID as a sequence diagram

(png format). For this, you use the method createDiagramFile . The first
argument is the name of the file, the second argument is the measure ID.
At the moment, this file is written on the machine that runs the JMX HTTP
server.

Demo
There is a demo for the use of the detailed statistics module. In the demo, all
server-side beans are intercepted with help of an auto-proxy whereas the client
side bean is intercepted with an explicit Spring proxy. The demo application runs
in two JVMs, which communicate through RMI.

Please refer to the readme-file of the demo for more information on how to launch
the demo:
http://el4j.svn.sourceforge.net/viewcvs.cgi/*checkout*/el4j/trunk/el4j/applications/d
emos/detailed_statistics/README.txt

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 202 / 320
ELCA Informatique SA, Switzerland, 2009.

Documentation for module
ShellLauncher

Purpose

Allows passing a bean shell expression on the JVM-command line that is
launched in your application. The purpose of this is to help with debugging or the
understanding of your application. One way to use it is to allow a remote login in
your JVM.

edit purpose

How to use

To start using this module, add the following to your project's pom.xml file.

 <dependency>

 <groupId>ch.elca.el4j.modules</groupId>

 <artifactId>module-bshlauncher</artifac tId>

 <version>1.0</version>

 </dependency>

Then you can set a bsh (beanshell) expression that should be launched at startup
(this is basically any Java code). You do this via -
Del4j.bsh.launchstr=javaCodeToLaunch .

We have predefined some scriptslets. You can also set your own scripts in the
resources/bsh_scriptlets/ folder of your modules. Please refer to the sample
scriptlets in the bsh_launcher module. One special feature (of the basic bsh) is
the scriptlet server(portNumber) . It is like a remote login into the JVM of your
application. This means you can execute any Java code in your JVM (so this can
be a major security risk - remove this dependency in critical deployments!). Here
is an introduction on how to use BeanShell
http://www.beanshell.org/manual/quickstart.html#Quick_Start .

How to use this "server(portNumber)" scriptlet in short:

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 203 / 320
ELCA Informatique SA, Switzerland, 2009.

• put the following string when you launch the JVM: -

Del4j.bsh.launchstr=server(2000); (typically you just add this to your
MAVEN_OPTS)

• normally launch your application with mvn

• connect to your application via

http://localhost:2000/remote/jconsole.html (assuming your application
runs on localhost)

• (optionally) if you would like to enable cut and paste from/ to your system

clipboard, you need to set the following java permission (in your currently
active java.policy file, refer e.g. to your browsers Java Console and look
at the System properties for this). On my machine I added in the file
C:\Program Files\Java\jre1.6.0_03\lib\security\java .policy the
following section:

grant codeBase "http://localhost:2000/*" {

 permission java.awt.AWTPermission "accessClipboa rd";

};

• alternative: you can also connect to your application via telnet through the
following call: telnet localhost 2001

Other ideas to do via bsh scripts: track # of threads used over time, memory
usage (e.g. print it every 10 seconds), threadInfo(), ...

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 204 / 320
ELCA Informatique SA, Switzerland, 2009.

Documentation for module
XmlMerge

Purpose

The XmlMerge module is a pragmatic library to merge XML documents.
edit purpose

Introduction

The aim of the XmlMerge module is to merge XML documents. Merging means
producing a new document out of several source documents. Merging XML
documents can be useful in many situations, such as adding modularity to
configuration files, deployment descriptors or build files. XMLMerger internally
relies on JDOM.

Here is a merge example:

<root>
 <a>

 <d id="0"/>
 <d id="1"/>

</root>

+

<root>
 <a>

 <c/>

 <d id="1"
newAttr="2"/>

</root>

=

<root>
 <a>

 <c />

 <d id="0" />

 <d id="1"
newAttr="2" />

</root>

original patch result

To obtain such a merge, here is the code:

public String merge(String original, String patch) {

 Configurer configurer = new

PropertyXPathConfigurer(" xpath.1=/root/d \n matcher.1=ID ");

 return new ConfigurableXmlMerge(configurer).merge(new String [] {

original, patch});

}

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 205 / 320
ELCA Informatique SA, Switzerland, 2009.

In the sample above, we configure that for the merging of the part /root/d one
should use the ID matcher.

The design is configurable and extensible in order to fulfill any requirement in the
behavior of the merge. The rest of this document explains how to use the module
and how to extend it.

Note that the design is focused towards flexibility and extensibility and not
performance.

Quick Reading Guide : if you want to get a quick overview read only the following

sections:

• How to use

• Original and Patch

• Processing model

• Operations

• Aliases for built-in operations

• Configuring with XPath and Properties

Module contents

The module contains the following stuff:

• Interfaces and infrastructure supporting the concepts the module is based
on (in fact this forms the API and SPI).

• Default implementations of these interfaces.

• Convenience support for configuring your merge using XPath (outside of
the XML documents) or with XML attributes within the XML documents to
merge.

• Tool to merge XML files from the command-line.

• Ant task for merging XML files from ant scripts.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 206 / 320
ELCA Informatique SA, Switzerland, 2009.

• SpringFramework resource implementation merging XML files read from
other resources.

• Web application to rapidly demonstrate the module.

Important concepts

Original and Patch

The sources are The XML documents (as java.lang.String, java.io.InputStream or
org.w3c.dom.Document) that we want to merge.

Several sources can be given, but the merge is always performed two-by-two,
using an original and a patch document. For example, when merging three
documents, the result of the merge of the two first documents is used as original
for merging with the third.

Processing model

The natural way of merging documents is to recursively traverse the elements of
each original and patch document and apply the following process to each
element.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 207 / 320
ELCA Informatique SA, Switzerland, 2009.

In the picture above, in the boxes OperationFactory (matcher), OperationFactory
(action) and OperationFactory (mapper) one can plug-in particular
implementations. There is a simplification in the picture: action works on the
parent node, the original node, and the patch element that was already mapped.

Core Concepts as Java Interfaces

See also the javadocs.

The XmlMerge infrastructure is based on the following concepts. For each of
them, a Java interface is defined in the module.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 208 / 320
ELCA Informatique SA, Switzerland, 2009.

Operations

• Matcher . A matcher implements a way to compare two XML elements (one

of the original document and one of the patch document) and decides if
they match.

• Action . When two elements match, an action is applied on both to produce

the result element and the result element is inserted in the result document.
An action can also be destructive, i.e. it can insert nothing in the result.

• Mapper . Before applying the action, the patch element is optionally

transformed by a mapper to give it the right form to appear in the result
document.

NB: If an element of the original document does not match any patch element, it
is nevertheless passed to the action with null as patch element. Respectively, if
the patch element does not match any original element, the action is applied with
null as original element.

Configuration with Factories

Used terminology

• Operation . Concepts and marker interfaces covering Matcher, Action and

Mapper for using factories.

• OperationFactory . Provides the corresponding operation for a pair of

original and patch element. The implementation of the factory decides
according to its configuration which implementation of the operation must
be applied to the pair of elements.

• MergeAction . Sub-interface of the Action interface. This is the kind of

action implementing the traversing of the element's sub-elements and
applying the corresponding matcher, mapper and action. Hence, a
MergeAction is configured by dependency injection with the
OperationFactory objects providing the mappers, matchers and actions
for the sub-elements. Note that a MergeAction is also responsible to pass
the factories to the merge actions applied to the sub-elements.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 209 / 320
ELCA Informatique SA, Switzerland, 2009.

• XmlMerge . Entry-point to perform the merge, it provides the merge

methods. One can configure it by injecting the MergeAction and Mapper
applied to the root element.

• Configurer . Interface for convenience classes configuring the root merge

action and root mapper of an XmlMerge instance; thus, it can also
configure the operation factories. This way, with only a few lines of code,
one can use XmlMerge. The ConfigurableXmlMerge wrapper class
automatically applies a Configurer on an XmlMerge instance.

Built-in implementations

Operations

The module provides implementations of operations that are commonly used:

Matchers

• TagMatcher . The original and patch elements match if the tag name is the
same.

• IdentityMatcher . The original and patch elements match if the tag name

are the same and the id attribute value are the same.

• SkipMatcher . The original and patch elements never match. Useful to

force inserting the elements.

Mapper

• IdentityMapper . "Do nothing" mapper, it returns an exact copy of the

element.

• NamespaceFilterMapper . Maps by removing all elements and attributes of
a given namespace. Useful with the AttributeOperationFactory which
allow defining the actions to apply as attributes in the patch document.

Actions

• OrderedMergeAction . Default merge action. It traverses parallelly the

original and patch elements, the matching pairs are determined in the order

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 210 / 320
ELCA Informatique SA, Switzerland, 2009.

of traversal. This is generally sufficient for all usage because most of
original and patch documents will have elements in the same order.

• ReplaceAction . Replaces the original with the patch element or creates
the element if not in original.

• OverrideAction . Replaces with the patch element only if it exists in the

original.

• CompleteAction . Copy the patch element only if it does not exist in the

original.

• DeleteAction . Copy the original element only if it does not exist in the
patch. If it exists in the patch, then nothing is added to the result.

• PreserveAction . Invariantly copies the original element regardless of the

existence of patch element.

• InsertAction . Inserts the patch element after elements of the same already

existing in the result. Use with the SkipMatcher to merge on one level and
keep the same relative order of elements.

• DtdInsertAction . Inserts the patch element in the result according to the
order specified in the original document's DTD. Use with the SkipMatcher
to merge on one level and make the document valid.

Aliases for Built-In Operations

For convenience in configuration, the built-in operations have short aliases, so
that we can refer to them using the aliases instead of the full class names:

• Matchers: TAG, ID , SKIP .

• Mappers: IDENTITY

• Actions: MERGE, REPLACE, OVERRIDE, COMPLETE, PRESERVE, INSERT, DTD.

These constants are defined in the classes StandardMatchers ,
StandardMappers , StandardActions .

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 211 / 320
ELCA Informatique SA, Switzerland, 2009.

XmlMerge Implementation

The DefaultXmlMerge class applies the OrderedMergeAction , TagMatcher and
IdentityMapper to all elements.

Operation Factories

Three implementations of the operation factory are provided:

• StaticOperationFactory . Returns the same operation for all element pairs.

Used when the same behavior applies to all elements of the document.

• XPathOperationFactory . Configured with a map of {XPath, Operation}, it
returns the operation of the first XPath matching the element path.

• AttributesOperationFactory . Configured with attributes in the patch

element.

Configuring your Merge

You have currently three ways to configure an XmlMerge instance:

Programming the Configuration

This is the most powerful but tedious way to configure. You create the instances
of the root merge action, root mapper and factories programmatically. Example:

<root>
 <a/>
 <c/>

</root> +

<root>
 <a>

 <c>

 <d/>
 </c>

</root>

=

<root>
 <a>

 <c/>

</root>

original patch result

public void testXPathOperationFactory() throws Exception {

 String [] sources = {

 " <root><a/><c/></root> ",

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 212 / 320
ELCA Informatique SA, Switzerland, 2009.

 " <root><a><c><d/></c></root> " };

 XmlMerge xmlMerge= new DefaultXmlMerge();

 MergeAction mergeAction = new OrderedMergeAction();

 XPathOperationFactory factory = new XPathOperationFactory();

 factory.setDefaultOperation(new CompleteAction());

 Map map = new LinkedHashMap();

 map.put(" /root/a ", new OrderedMergeAction());

 factory.setOperationMap(map);

 mergeAction.setActionFactory(factory);

 xmlMerge.setRootMergeAction(mergeAction);

 String result = xmlMerge.merge(sources);

 String expected =

 " <?xml version=\ "1.0\" encoding=\ "UTF-8\" ?>" + NL +

 " <root> "+ NL +

 " <a> "+ NL +

 " "+ NL +

 " "+ NL +

 " <c /> "+ NL +

 " </root> ";

 assertEquals(expected.trim(), result.trim());

}

Note that this kind of configuration can be interesting in conjunction with the
SpringFramework, since these components can be configured in Spring
configuration files.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 213 / 320
ELCA Informatique SA, Switzerland, 2009.

Configuring with XPath and Properties

The most usual way is to configure XmlMerge with the
PropertyXPathConfigurer which uses a Properties object.

The properties define XPath entries and the associated matchers, mappers and
actions. Syntax:
xpath. pathName=XPath

matcher. pathName=Matcher alias or class name mapper. pathName=Mapper alias or

class name action. pathName=Action alias or class name

By default, the OrderedMergeAction , IdentityMapper and TagMatcher is used

for all elements.

Example:

test.properties :

 action.default=COMPLETE

 xpath.path1=/root/a

 action.path1=MERGE

<root>
 <a/>
 <c/>

</root> +

<root>
 <a>

 <c>

 <d/>
 </c>

</root>

=

<root>
 <a>

 <c/>

</root>

original patch result

public void testPropertyXPathConfigurer() throws Exception {

 String [] sources = {

 " <root><a/><c/></root> ",

 " <root><a><c><d/></c></root> " };

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 214 / 320
ELCA Informatique SA, Switzerland, 2009.

 Properties props = new Properties ();

 props.load(getClass().getResourceAsStream(" test.properties "));

 Configurer configurer = new PropertyXPathConfigurer(props);

 XmlMerge xmlMerge= new ConfigurableXmlMerge(configurer);

 String result = xmlMerge.merge(sources);

 String expected =

 " <?xml version=\ "1.0\" encoding=\ "UTF-8\" ?>" + NL +

 " <root> "+ NL +

 " <a> "+ NL +

 " "+ NL +

 " "+ NL +

 " <c /> "+ NL +

 " </root> ";

 assertEquals(expected.trim(), result.trim());

}

Configuring with Inline Attributes in Patch Documen t

Another way, to avoid using external Properties and show explicitely the merge
behavior in the patch document, is to use the AttributeMergeConfigurer .

You simply add attributes with a special namespace in the patch elements
describing the operations to apply. Example:

<root>
 <a>

 <d/>

 <e
id='1'/>

 <e
id='2'/>
</root>

+

<root

xmlns:merge='http://xmlmerge.el4j.elca.ch'>
 <a merge:action='replace'>hello

 <c/>
 <d merge:action='delete'/>

 <e id='2' newAttr='3'
merge:matcher='ID'/>

</root>

=

<root>

<a>hello

 <c />
 <e id="1"

/>
 <e id="2"
newAttr="3"

/>
</root>

original patch result

public void testAttributeMerge() throws Exception {

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 215 / 320
ELCA Informatique SA, Switzerland, 2009.

 String [] sources = {

 " <root> " +

 " <a> " +

 " " +

 " " +

 " <d/> " +

 " <e id='1'/> " +

 " <e id='2'/> " +

 " </root> ",

 " <root xmlns:merge='http://xmlmerge.el4j.elca.ch'>

" +

 " <a merge:action='replace'>hello

" +

 " <c/>

" +

 " <d merge:action='delete'/> " +

 " <e id='2' newAttr='3' merge:matcher='ID'/>

" +

 " </root>

"

 };

 String result = new ConfigurableXmlMerge(new

AttributeMergeConfigurer()).merge(sources);

 String expected =

 " <?xml version=\ "1.0\" encoding=\ "UTF-8\" ?>" + NL +

 " <root> "+ NL +

 " <a>hello "+ NL +

 " <c /> "+ NL +

 " <e id=\ "1\" /> " + NL +

 " <e id=\ "2\" newAttr=\ "3\" /> " + NL +

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 216 / 320
ELCA Informatique SA, Switzerland, 2009.

 " </root> ";

 assertEquals(expected.trim(), result.trim());

}

Writing your own Operations

It is easy to customize and extend the behavior of the XmlMerge module by
writing new operations.

For example, one may want to merge web.xml files. To add a new parameter to an
existing servlet, we must match the right servlet entry, thus match using the tag
<servlet-name>. See below an example of a new Matcher implementation, the
ServletNameMatcher .

<web-app>

 <servlet>
 <servlet-name>

 hello
 </servlet-name>
 <servlet-class>

test.HelloServlet

 </servlet-
class>

 </servlet>

 <servlet>
 <servlet-name>

 bye
 </servlet-name>
 <servlet-class>

test.ByeServlet
 </servlet-

class>
 </servlet>

 <servlet-mapping>
 <servlet-name>

 hello
 </servlet-name>

 <url-pattern>
 /hello

 </url-pattern>
 </servlet-

mapping>

+

<web-app>

 <servlet>
 <servlet-name>

 bye
 </servlet-name>

 <init-param>
 <param-name>

 message
 </param-

name>
 <param-

value>
 Bye bye!

 </param-
value>

 </init-param>
 </servlet>

</web-app>

=

<web-app>

 <servlet>
 <servlet-name>

 hello
 </servlet-name>
 <servlet-class>

test.HelloServlet

 </servlet-
class>

 </servlet>

 <servlet>
 <servlet-name>

 bye
 </servlet-name>
 <servlet-class>

test.ByeServlet
 </servlet-

class>
 <init-param>

 <param-name>
 message
 </param-

name>
 <param-

value>
 Bye bye!

 </param-
value>

 </init-param>

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 217 / 320
ELCA Informatique SA, Switzerland, 2009.

 <servlet-mapping>
 <servlet-name>

 bye
 </servlet-name>

 <url-pattern>
 /bye

 </url-pattern>
 </servlet-

mapping>
</web-app>

 </servlet>

 <servlet-mapping>
 <servlet-name>

 hello
 </servlet-name>

 <url-pattern>
 /hello

 </url-pattern>
 </servlet-

mapping>

 <servlet-mapping>
 <servlet-name>

 bye
 </servlet-name>

 <url-pattern>
 /bye

 </url-pattern>
 </servlet-

mapping>
</web-app>

original patch result

Ensure your ServletMatcherClass is in the classpath and configure it in the

XPath properties:

 xpath.path1=/web-app/servlet

 matcher.path1=com.mycompany.ServletNameMatcher

 # Do not touch the existing name

 xpath.path2=/web-app/servlet/servlet-name

 action.path2=PRESERVE

 # Do not touch existing init-params

 xpath.path3=/web-app/servlet/init-param

 action.path3=INSERT

ServletNameMatcher implementation:

package com.mycompany;

public class ServletNameMatcher implements Matcher {

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 218 / 320
ELCA Informatique SA, Switzerland, 2009.

 public boolean matches(Element originalElement, Element

patchElement) {

 String originalServletName =

originalElement.getChildText(" servlet-name ");

 String patchServletName =

patchElement.getChildText(" servlet-name ");

 return patchServletName != null && originalServletName !=

null &&

 originalServletName.trim().equals(p atchServletName.trim());

 }

}

How to use

This section shows the different possibilities how this module can be used.

Command-line Tool

The module includes a tool to merge XML files from the command-line.

To be able to use the command-line tool, you have to execute the following steps:

• Go to EL4J_HOME/framework

• Recursively compile all required targets files: ant jars.rec.module.module-

xml_merge

• Create an executable distribution of the xml_merge module:
create.distribution.module.eu.module-xml_merge.cons ole

• The executable distribution can be found in the module-xml_merge-default

folder under EL4J_HOME/framework/dist/distribution . You can copy this
folder to any location you want.

• To be able to execute the command-line tool from your desired location,
you have to add the location containing the executable distribution your
PATH environment variable:

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 219 / 320
ELCA Informatique SA, Switzerland, 2009.

o Windows : add YOUR_LOCATION\module-xml_merge-default to the right

end of your PATH environment variable, where YOUR_LOCATION
denotes the folder into which you have copied the module-
xml_merge-default folder.

o Unix : launch the following command to set the PATH environment

variable, where YOUR_LOCATION denotes the folder into which you
have copied the module-xml_merge-default folder: export

PATH=$PATH:"YOUR_LOCATION/module-xml_merge-default"

The previous steps have to be executed only once. You are now ready to launch
the command-line tool from any location by launching the xmlmerge script:

xmlmerge [-config <config-file>] file1 file2 [file3 ...]

In this command, config-file denotes an optional XPath property file and file1,
file2, file3 etc are the xml files to merge. The result is outputted on the standard
output.

Ant Task

The module also includes an Ant task for merging XML files from ant scripts.

Here is an example which shows the usage of this Ant task in a build.xml file:

 <target name="test-task">

 <taskdef name="xmlmerge"

classname="ch.elca.el4j.xmlmerge.anttask.XmlMergeTa sk"

 classpath="module-

xml_merge.jar;jdom.jar;jaxen.jar;saxpath.jar"/>

 <xmlmerge dest="out.xml" conf="test.properti es">

 <fileset dir="test">

 <include name="source*.xml"/>

 </fileset>

 </xmlmerge>

 </target>

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 220 / 320
ELCA Informatique SA, Switzerland, 2009.

In this task, dest denotes the output merged file, and conf denotes an optional
XPath property file. The indicated fileset selects the files to merge (in this
example, the files in the test directory whose name begins with source will be
merged).

The jar files which are needed on the classpath to execute this task are module-

xml_merge.jar , jdom.jar , jaxen.jar and saxpath.jar . The module-xml_merge.jar
file can be found in the EL4J_HOME/framework/dist/lib folder, and the three other
ones can be found in the EL4J_HOME/framework/lib folder. If you have created an
executable distribution of the xml_merge module (see command-line tool), you
can also find these libraries in the lib folder of the executable distribution.

Spring Resource

You can also use this module to create an XML Spring Resource on-the-fly by
merging XML documents read from other resources. Here is a configuration
example:

 <bean name="merged"

class="ch.elca.el4j.xmlmerge.springframework.XmlMer geResource">

 <property name="resources">

 <list>

 <bean

class="org.springframework.core.io.ClassPathResourc e">

 <constructor-arg>

 <value>ch/elca/el4j/xmlmerg e/r1.xml</value>

 </constructor-arg>

 </bean>

 <bean

class="org.springframework.core.io.ClassPathResourc e">

 <constructor-arg>

 <value>ch/elca/el4j/xmlmerg e/r2.xml</value>

 </constructor-arg>

 </bean>

 </list>

 </property>

 <property name="properties">

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 221 / 320
ELCA Informatique SA, Switzerland, 2009.

 <map>

 <entry key="action.default" value=" COMPLETE"/>

 <entry key="xpath.path1" value="/ro ot/a"/>

 <entry key="action.path1" value="ME RGE"/>

 </map>

 </property>

 </bean>

This configuration example is also part of the module and can be found in the
conf/template/xmlmerge-config.xml file.

Web demo

The module also contains a web application to demonstrate how XML documents
can be merged.

To be able to launch the web application, you have to execute the following steps:

• Go to EL4J_HOME/framework

• Recursively compile all required targets files: ant jars.rec.module.module-

xml_merge

• Deploy the demo application into Tomcat: ant

deploy.war.module.eu.module-xml_merge.web

• Open in http://localhost:8080/xmlmerge/demo a browser.

Debug output

To set up some logging facility (to show what is going on in case of problems):
Add the following command line switch: -Dxmlmerge.debug=true .

References
• Analysis about general merging of XML (shows that the "perfect XML

merge is highly complex and that a pragmatic approach seems
reasonable): http://www.cs.hut.fi/~ctl/3dm/thesis.pdf

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 222 / 320
ELCA Informatique SA, Switzerland, 2009.

• JavaWorld article of Laurent Bovet: http://www.javaworld.com/javaworld/jw-
07-2007/jw-07-xmlmerge.html

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 223 / 320
ELCA Informatique SA, Switzerland, 2009.

Documentation for module
SocketStatistics

Purpose
With the SocketStatistics module, you can get statistics, logs and an inside view
about the Socket connections of your (any) java application. The information can
be accessed directly over an M(X)Bean using jconsole or the java visual vm and
is logged using the already present logging facility of the monitored application.

Important concepts
The module is mainly based on an implementation of SocketImplFactory which
creates (and returns) an alternative implementation of the interface SocketImpl :
SocketImplLogger . Particular methods of this class (bind , connect , getInputStream
and getOutputStream) do not only delegate the calls to an instance of
java.net.SocksSocketImpl , but also handle the logging. The forwarding of method
calls is handled by the ReflectiveDelegator class using reflection.

The traffic logging in its turn is handled by OutputStreamLogger and
InputStreamLogger - both extensions of the OutputStream / InputStream classes -
which are returned to the application when the Java Socket class is using
SocketImplLogger for the creation of a new Socket.

The gathering of statistics is in the responsibility of the actual SocketStatistics
and the ConnectionStatistics classes. Every Socket has therefore a reference to
a ConnectionStatistics instance.

Logging
The SocketStatistics Module uses the logging facility of the underlying / calling
application. Therefore, the produced log entries of SocketStatistics can be found
inside the applications log. To achieve this, a GenericLogger is introduced.

At creation time of a new GenericLogger instance, the GenericLogFactory checks
for the presence of a an already initiated log facility from the running application.
The search order is as follows:

1. SLF4J (org.slf4j.LoggerFactory)

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 224 / 320
ELCA Informatique SA, Switzerland, 2009.

2. Apache Commons Logging (org.apache.commons.logging)

3. Log4J (org.apache.log4j)

If none of these logging facilities are found, the JDK logging facility
(java.util.logging) is used with the default configuration.

How to use
There are two possibilities to use SocketStatistics :

• inside your code (Method1)

• directly by the java vm / runtime (Method2)

For use according to Method2, the SocketStatistics jar can be downloaded
directly from the Maven 2 EL4J repository

Method 1 - inside your code
If you want to use SocketStatistics within your own code, this can be done by
three simple line of java:

 SocketImplFactory sif = new LoggerSocketFacto ry();

 Socket.setSocketImplFactory(sif);

 ServerSocket.setSocketFactory(sif);

With these lines, we replace the basic SocketImplFactory for all further created
Sockets in the natural "Java way".

Method 2 - directly by the java vm / runtime
The second approach is a bit more hacky - but rather convenient.

Within the SocketStatistics module, there is also a slightly modified version of
java.net.Socket. In this modified Socket, the LoggerSocketFactory is used as
default SocketFactory . So every created Socket (by the use of the modified
java.net.Socket class) has the capability of logging and the generation of
statistics.

This version of java.net.Socket is "injected" to the java vm using the
Xbootclasspath option.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 225 / 320
ELCA Informatique SA, Switzerland, 2009.

java -Xbootclasspath/p:[PATH TO THE SocketStatistic s JAR] [REST OF THE

NORMALY USED STATEMENTS]

Hint: Using the extra paramter /p, the classes inside the jar are prepend in front of
the default bootstrap class path - and do not completely replacing the whole
bootstrap class path.

Monitoring using M(X)Bean
On the first call of the method createSocketImpl, the LoggerSocketFactory
registers an MXBean on the PlatformMBeanServer . Therefore, the information
about open (and closed) Sockets is also accessible over the
ch.elca.el4j.util.SocketStatistics MBean using jconsole or the java visual vm.

If the MBean Tab is missing in the java visual vm, it has to be installed as plugin
first. Go to Tools -> Plugins -> Available Plugins Tab -> Select VisualVM? -
MBeans -> Click on install

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 226 / 320
ELCA Informatique SA, Switzerland, 2009.

The values shown are basically rather self explaining. The editable KeepStats
value configures how long (in seconds) after a Socket has been closed it will still

appear in the list of statistics.

Operations in the SocketStatistics M(X)Bean
Apart from simple monitoring, there are also two operations available in the
MBean.

• exportStatisticsCSV exports all gathered statistics of open and closed

sockets to a .csv file. As argument, a full path to the csv is required (e.g.
C:\outputdir\stats.csv).

• deleteStatistics deletes all previously gathered statistics.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 227 / 320
ELCA Informatique SA, Switzerland, 2009.

Usage Example(s)

On Tomcat with Method2
This is a simple, straight forward example, how to monitor all connections on a
tomcat server using SocketStatistics .

To enable SocketStatistics for a tomcat server (on windows) search for the
catalina.bat file inside the tomcat\bin directory. In this file, replace the line

set JAVA_OPTS=%JAVA_OPTS -

Djava.util.logging.manager=org.apache.juli.ClassLoa derLogManager [...]

with this line

set JAVA_OPTS=%JAVA_OPTS -Xbootclasspath/p:[PATH TO THE SocketStatistics

JAR] -Djava.util.logging.manager=org.apache.juli.Cl assLoaderLogManager

[...]

-- JonasHauenstein - 23 Sep 2009

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 228 / 320
ELCA Informatique SA, Switzerland, 2009.

The Hibernate Offliner

Introduction

Purpose
We have a database that we access via hibernate in a client/server environment.
We would like to be able to offline a subset of the data on the client and work with
it offline, then resynchronize with the server.

The offliner does this by using a second database local to the client (and known
as the local database). This means at any time the user can work with a database
(daos, queries etc.). In addition, he can perform offliner operations.

Site map/ structure of documentation
• HibernateOffliner The offliner main page.

o OfflinerSpec Offliner specifications.

� OfflinerKeyVersion Key and version handling.

� OfflinerStrategies Chunking strategies design.

� OfflinerTests List of all offliner tests and what they test.

o OfflinerImpl Offliner implementation details.

� OfflinerOffline The offline operation.

� OfflinerSync The synchronization operation.

� OfflinerMappingEntries Mapping entries implementation and
meaning.

� OfflinerKeyManagement Implementation of key management.

o OfflinerGraphWalker The graph walker package of the offliner.

o OfflinerAspects The aspects package of the offliner. (Renamed to
objectwrapper.)

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 229 / 320
ELCA Informatique SA, Switzerland, 2009.

� OfflinerAspectsList List of currently available aspects and
implementations.

o OfflinerVersions Version history, differences and future plans.

o OfflinerLimitationsAndPerformance

• Powerpoint presentation under this link.

Offliner Terminology
Remote

Refers to the remote database which holds the master copy of the data.
We can either work with it directly or offline some data, use it then
resynchronize. Where appropriate, the full term remote database is used.

Local
Refers to the client or the client's local copy of some data.

Database
Unqualified, this is the remote database. "Local database" is used where
necessary to mean the client's local database seen as a database.

Offline (noun)
Refers the the client's local copy of some data.

offline (verb)
To copy data from the database into the local database.

(re)synchronize
To copy data from the local database back to the database, managing
versioning and optimistic locking conflicts in the process.

Usage
The offliner implements DaoRegistry. Applications must get all their daos from the
offliner and not cache them in between calls that change the offliner's state. At
any time, the offliner returns a dao for the currently active data source (remote
database or local one). The offliner can be set to the states online and offline to
switch between the two.

The offliner supports the two operations offline and synchronize. Offline copies a
set of objects from the database into the local database, either the objects
themselves can be passed to the method or a hibernate query in which case the
offliner executes it on the database and puts the results in the local database.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 230 / 320
ELCA Informatique SA, Switzerland, 2009.

Synchronize takes no parameters, copies all changed data to synchronize the
local database with the database and returns the conflicts (objects changed both
in the local database and the database, which it won't overwrite) encountered.

The best way to use the offliner is

1. Offline some data.

2. Go offline.

3. Use and edit the local data.

4. Synchronize.

5. Repeat the last two steps as often as you like in any order.

Offliner demo

The demo is under internal/sandbox/beanbrowser-offliner-demo (read the
readme file there). FYI: The demo under
internal/applications/demos/imputations-offliner has some issues.

Offliner setup

Both the client and the server part of the offliner use the object wrapper package.
This is documented separately; it is enough to copy the provided configurations
for it.

On the server, run an OffliningServer which needs a DaoRegistry for the
database and an object wrapper implementation. On the client, run the
OfflinerClientImpl and link it to a OfflinerInfo object which you have filled with the
necessary data:

• The client-side object wrapper implementation.

• The client-side DaoRegistry for the local database (the local database).

• A client-side DaoRegistry for the server dao remoting proxies.

• The domain classes you wish to use with the offliner and a chunking
strategy for each.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 231 / 320
ELCA Informatique SA, Switzerland, 2009.

• The offlining server (remoting proxy).

• An offlining state table (just use an instance of the default implementation).

Setup in detail

Common beans (client and server)

 <!-- Common wrappers. -->

 <bean id="objectWrapper"

class="ch.elca.el4j.util.objectwrapper.ObjectWrappe r">

 <property name="wrappables">

 <map>

 <entry

key="ch.elca.el4j.util.objectwrapper.interfaces.Key edVersioned" value-

ref="keyedVersioned" />

 <entry key="ch.elca.el4j.util.objectwra pper.interfaces.Linked"

value-ref="linked" />

 <entry

key="ch.elca.el4j.services.persistence.hibernate.of flining.objectwrapper.Ma

pped" value-ref="mapped" />

 <entry

key="ch.elca.el4j.services.persistence.hibernate.of flining.objectwrapper.Ty

ped" value-ref="typed" />

 <entry

key="ch.elca.el4j.services.persistence.hibernate.of flining.objectwrapper.Un

iqueKeyed" value-ref="uniqueKeyed" />

 <entry

key="ch.elca.el4j.services.persistence.hibernate.of flining.objectwrapper.Of

fliningStateWrappable" value-ref="offliningState" / >

 </map>

 </property>

 </bean>

 <bean id="keyedVersioned"

class="ch.elca.el4j.util.objectwrapper.impl.KeyedVe rsionedHibernateImpl">

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 232 / 320
ELCA Informatique SA, Switzerland, 2009.

 <constructor-arg ref="sessionFactory" />

 </bean>

 <bean id="linked"

class="ch.elca.el4j.util.objectwrapper.impl.LinkedH ibernateImpl">

 <constructor-arg ref="sessionFactory" />

 </bean>

 <!-- Mapped is separate for local and remote. -->

 <bean id="typed"

class="ch.elca.el4j.services.persistence.hibernate. offlining.objectwrapper.

impl.TypedImpl" />

 <bean id="uniqueKeyed"

class="ch.elca.el4j.services.persistence.hibernate. offlining.objectwrapper.

impl.UniqueKeyedImpl" />

 <bean id="offliningState"

class="ch.elca.el4j.services.persistence.hibernate. offlining.objectwrapper.

impl.OffliningStateTableImpl">

 <constructor-arg ref="stateTable" />

 </bean>

 <!-- The state table. Although this is in common, t here are two

different

 tables on the client and the server. -->

 <bean id="stateTable"

class="ch.elca.el4j.services.persistence.hibernate. offlining.util.Offlining

StateTable" />

Server-side beans

 <!-- It is assumed the database is set up as usual in EL4J. -->

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 233 / 320
ELCA Informatique SA, Switzerland, 2009.

 <!-- The mapping table server implementation (in-me mory). -->

 <bean id="mappingTable"

class="ch.elca.el4j.services.persistence.hibernate. offlining.util.ServerMap

pingTable" />

 <!-- The mapped server implementation. -->

 <bean id="mapped"

class="ch.elca.el4j.services.persistence.hibernate. offlining.objectwrapper.

impl.MemoryMappedImpl">

 <constructor-arg ref="mappingTable" />

 </bean>

 <!-- The offlining server. -->

 <bean id="offliningServer"

class="ch.elca.el4j.services.persistence.hibernate. offlining.impl.Offlining

ServerImpl">

 <constructor-arg ref="daoRegistry" />

 <constructor-arg ref="mappingTable" />

 <constructor-arg ref="objectWrapper" />

 <constructor-arg ref="stateTable" />

 </bean>

Client-side beans

 <!-- It is assumed the client-side database is set up correctly and the

server daos are exported as proxies to the client. -->

 <!-- The dao registry. We must restrict this not to inlcude server dao

proxies. One possibility is to name client-side dao s *Dao as usual and

server proxies *Rao. -->

 <bean id="daoRegistry"

class="ch.elca.el4j.services.persistence.generic.da o.impl.DefaultDaoRegistr

y">

 <property name="namePattern" value="*Dao" />

 </bean>

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 234 / 320
ELCA Informatique SA, Switzerland, 2009.

 <!-- A second DaoRegistry that collects the server- side dao proxies. -->

 <!-- A "RAO" is a "remote access object", to keep t hem distinct from the

local "DAO" ones. -->

 <bean id="daoRegistryRemote"

class="ch.elca.el4j.services.persistence.generic.da o.impl.DefaultDaoRegistr

y">

 <property name="namePattern" value="*Rao" />

 </bean>

 <!-- The client-side mapping table dao. Note that t his is not

autocollected by default as it is in a different pa ckage from the domain

classes. This is ok because only the offliner uses it (in the mapping table

implementation) and needs an explicit reference to it anyway. -->

 <bean id="mapDao"

class="ch.elca.el4j.services.persistence.hibernate. offlining.impl.MappingTa

bleDao" />

 <!-- The offliner properties dao. -->

 <bean id="propertyDao"

class="ch.elca.el4j.services.persistence.hibernate. offlining.util.PropertyD

ao" />

 <!-- The client-side mapping table implementation t hat uses the mapping

dao. -->

 <bean id="mapped"

class="ch.elca.el4j.services.persistence.hibernate. offlining.objectwrapper.

impl.DatabaseMappedImpl">

 <constructor-arg ref="mapDao" />

 </bean>

 <!-- Replace this with a proxy for the server-side offlining server. -->

 <!-- <bean id="server"

class="ch.elca.el4j.services.persistence.hibernate. offlining.test.RmiOfflin

ingServerSimulator" scope="singleton"/> -->

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 235 / 320
ELCA Informatique SA, Switzerland, 2009.

 <!-- The offliner info object. All client-side conf iguration is done

here. -->

 <bean id="info"

class="ch.elca.el4j.services.persistence.hibernate. offlining.impl.OfflinerI

nfo">

 <!-- The object wrapper. -->

 <property name="wrapper" ref="objectWrapper"/ >

 <!-- The client-side dao registry. -->

 <property name="clientDaoRegistry" value="dao Registry" />

 <!-- The dao registry for the server proxies. -->

 <property name="serverDaoRegistry" value="dao RegistryRemote" />

 <!-- The server. -->

 <property name="server" ref="server" />

 <!-- The state table. (We should really instantiate this internally,

 but then we can't use spring for the wrapper package either.) -->

 <property name="stateTable" ref="stateTable" />

 <!-- Create one singleton instance of each strategy you want to use.

 <bean id="allStrategy"

class="ch.elca.el4j.services.persistence.hibernate. offlining.chunk.AllStrat

egyImpl" scope="singleton" />

 -->

 <!-- The classes map. This must be a linked hash ma p to preserve

order of the keys.

 It has two purposes: One, as a sorted list of all classes to iterate

over when

 synchronizing. Two, to provide a chunking str ategy for each class. --

>

 <property name="classes">

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 236 / 320
ELCA Informatique SA, Switzerland, 2009.

 <util:map map-class="java.util.LinkedHashM ap">

 <!-- Enter domain classes and strategies here. -->

 <!--

 <entry key="test.testclasses.Person" re f="allStrategy"/>

 -->

 </util:map>

 </property>

 </bean>

 <!-- The actual offliner. Note that we use the spri ng implementation as

it is required to ensure

 the context is ready before we access any DAOs. If you create the

offliner in java, use the

 OfflinerClientImpl directly. -->

 <bean id="offliner"

class="ch.elca.el4j.services.persistence.hibernate. offlining.impl.OfflinerS

pringImpl">

 <constructor-arg ref="info" />

 </bean>

Setting up the database
The database set-up is the user's responsibility. The remote database will usually
be given, the local database must be identical to hibernate but use keys from a
disjoint set. For example, if you have a domain object SimplePerson with the
following table definition in the remote database:

CREATE TABLE SIMPLEPERSON (

 ID BIGINT NOT NULL PRIMARY KEY GENERATED BY DEF AULT AS IDENTITY

 (START WITH 1, INCREMENT BY 1),

 VERSION BIGINT NOT NULL,

 NAME VARCHAR(40) NOT NULL,

 EMAIL VARCHAR(40) NOT NULL

);

You could do the same locally except that you replace the key generator with
(START WITH -1, INCREMENT BY -1). The Typed implementation must be

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 237 / 320
ELCA Informatique SA, Switzerland, 2009.

compatible with your strategy, this (positive/negative) is the default strategy
although it does not work under Oracle.

You must implement Typed yourself if you want to change this scheme, here is
the default:

 /** {@inheritDoc} */

 public KeyType getType() {

 Serializable key = m_wrapper.wrap(KeyedVersio ned.class, m_target)

 .getKey();

 if (key instanceof Long) {

 Long keyAsLong = (Long) key;

 return (keyAsLong.equals(0L) ? KeyType.NUL L

 : (keyAsLong > 0L ? KeyType.REMOTE : Ke yType.LOCAL));

 } else if (key instanceof Integer) {

 Integer keyAsInt = (Integer) key;

 return (keyAsInt.equals(0) ? KeyType.NULL

 : (keyAsInt > 0 ? KeyType.REMOTE : KeyT ype.LOCAL));

 } else {

 throw new IllegalArgumentException("Key no t of type Long."

 + " The default implementation requires this.");

 }

 }

 /** {@inheritDoc} */

 public void nullKey() {

 try {

 m_wrapper.wrap(KeyedVersioned.class, m_tar get).setKey(0L);

 } catch (ClassCastException ex) {

 throw new IllegalStateException("The defau lt implementation

requires "

 + "keys of type long.");

 }

 }

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 238 / 320
ELCA Informatique SA, Switzerland, 2009.

Finally, you must set up the mapping and property tables in the local database.
The create script is in the offliner's test resources, the relevant part is

CREATE TABLE KEYMAP (

 ID INT NOT NULL PRIMARY KEY GENERATED BY DEFAULT AS IDENTITY

 (START WITH 1, INCREMENT BY 1),

 LOCALBASEVERSION VARCHAR(128) NOT NULL,

 REMOTEBASEVERSION VARCHAR(128) NOT NULL,

 DELETEVERSION BIGINT NOT NULL,

 SYNCVERSION INT,

 LOCALKEY VARCHAR(128) NOT NULL,

 REMOTEKEY VARCHAR(128) NOT NULL

);

CREATE TABLE OFFLINERPROPERTIES (

 ID INT NOT NULL PRIMARY KEY GENERATED BY DEFAULT AS IDENTITY

 (START WITH 1, INCREMENT BY 1),

 PROPNAME VARCHAR(30) NOT NULL UNIQUE,

 PROPVALUE VARCHAR(40)

);

Offliner Specifications

Functionality

An offliner implementation adds offlining functionality to a database accessed via
DAOs.

To use offlining, the client must get his DAOs from the offliner by using it as a
DaoRegistry. These DAOs must not be cached by the client between state
changes in the offliner (which the client initiates).

An offliner has two states: online and offline. In online mode, it forwards all calls to
DaoRegistry.getFor(Class) to the database's DaoRegistry. In other words, it
performs as if you were working directly on the database with no offliner present.
In offline mode, the offliner returns DAOs for a local database. At all times, the

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 239 / 320
ELCA Informatique SA, Switzerland, 2009.

offliner's DaoRegistry implementation is guaranteed to return a valid DAO for the
active database (unless no such DAO exists).

The offliner offers two operations: offline and synchronize.

After performing a set of offline operations, the client may go offline and work with
the local database. He can perform multiple offline or synchronize operations in
sequence.

In addition, the offliner allows the client to clear the local database completely.

Conflicts
A conflict can occur on offlining or synchronizing the local with the remote
database. It represents an object that caused an exception while trying to save it.

Exceptions during synchronize that occur in a saveOrUpdate or delete operation
are caught by the offliner and wrapped in conflict objects. These contain, at least,
the original exception, the phase during which the exception occurred and the
object that caused the exception if present (the only time it is not present is if we
are trying to delete an object, already deleted on the client, on the server). One
special case is dependent conflicts: If an object has one or more children that
caused a conflict, the parent object is automatically marked as conflicted and it is
not even attempted to save to the database.

synchronize() returns a Conflict[] that is of length 0 if the operation was
successful, otherwise it contains all conflicts that occurred. For each conflicted
object, exactly one conflict must be returned. If an object is both locally and
dependently conflicted, the dependent conflict takes precedence as no attempt
can be made to save a dependently conflicted object.

Deleting

There are two kinds of delete imaginable on the local database:

The first is removing an object to prevent it from being resynchronized, to cancel
local changes, or simply because we do not need it in the local database
anymore. This kind of delete functions as if the object had never been offlined and
is accessible over Offliner.evict() .

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 240 / 320
ELCA Informatique SA, Switzerland, 2009.

The second is requesting an object be deleted from the server, in which case the
offliner has to mark it as deleted and process the deletion on synchronization.
This is currently implemented by wrapping all local DAOs and firing
Offliner.markforDeletion() in the delete methods.

Offliner Key and Version handling

Hibernate assumes it alone is responsible for the primary keys and versions of
persistent objects and the user will never do something unusual like change them
himself. Unfortunately, when dealing with two databases, we have to do exactly
this and cheat, hack and trick our way around hibernate's assumptions.

Hibernate's assumptions

• An object with a key of 0 (For numeric keys. Possibly null for string keys,
not tested.) is new. It will recieve a key on saving into the database. The
version field is saved as it is, no version conflicts can occur for new objects.

• An object with a non-zero key is assumed to be a saved instance.
Hibernate looks for the database entry with this key and

o If none exists, assumes the object was deleted in the meantime.
Optimistic locking conflict.

o If it exists, compares the versions:

� If they are equal, the object is saved and the version
incremented.

� If the versions differ, a versioning (optimistic locking) conflict is
thrown.

Getting past these assumptions

The basic principle of "cheating" hibernate is whenever an object is saved to a
database, it must carry the exact key and version it last had when it came from
that database.

The second principle is whenever an object is newly saved to the local database,
its key must be nulled first.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 241 / 320
ELCA Informatique SA, Switzerland, 2009.

From this, it is clear that we somewhere have to store metadata for each object
holding at least the "other" key and version, so we can swap them with the
object's current ones when we move it from one database to the next. This
metadata for an object is called its mapping entry.

The mapping entry

In fact we hold all data in the mapping entry - that is, local and remote keys and
versions. This allows us to tell easily when an object has been changed: For X
being one of "local" or "remote", if an object has an X key then it has been
changed since the last offline/sync (and thus needs some kind of update in the
next one) if and only if its X version differs from its X "base" version in the
mapping entry.

The current state of an object can be found by looking at its key: If is from the
REMOTE subset of all possible keys (as defined in the TypedAspect
implementation) it is from the database, otherwise (LOCAL) from the local
database (NULL keys are an exception in any case, the offliner should never see
any when moving objects between databases).

The mapping entry stores UniqueKey instances instead of the actual keys. As
unique keys and actual keys can be converted back and forth, this is just an
indirection and not a problem.

Key and Version Modification
The operations try to copy objects from one database to the other. They fail if
changed data would be overwritten. Force operations are meant for conflict
resolution and overwrite their target even if it has been changed.

Note that a force(obj) will only force obj but not its children. Therefore, forcing
objects which are dependent-conflicted will not work (and leave the mapping entry
unchanged). The object that caused the conflict first must be determined from the
conflict type and forced.

Adding an object to the local database that is new there

1. The object's remote key and version are saved to the mapping entry to
allow us to copy it back.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 242 / 320
ELCA Informatique SA, Switzerland, 2009.

2. The object's key is nulled and the object saved to the local database.

3. The object's local key and version are saved to the mapping entry.

Updating an object in the local database with a new server
version
We assume the server version is greater than the remote base one. If they are
equal, we can skip the save; if it is smaller something is wrong with the server.
We are only allowed to overwrite a local object of local base version (i.e. not a
changed local object) except in a force operation.

1. The remote version is copied into the mapping entry.

2. The object's key and version are set to the current local one (queried from
the local database) to allow the overwrite.

3. The object's local version is copied to the metadata from the saved
instance. (Unless the last step failed).

Synchronizing a locally changed object with the ser ver
(Phase 1)
This procedure is done on the server.

1. The object's local version is saved temporarily.

2. The object's key and version are set to the remote ones.

3. The update is performed.

If the update suceeds,

1. The object's remote version is saved in the mapping entry.

2. The object's local version is set to the one saved in step one. This makes
the object "unchanged".

If the update fails, the mapping entry versions are left as they are so the object
does not appear unchanged. The version is left one the remote one in case the
user needs to investigate it from the Conflict object.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 243 / 320
ELCA Informatique SA, Switzerland, 2009.

Synchronizing a new object in the local database wi th the
server (Phase 1)

1. The object's local version is saved temporarily.

2. The key is nulled.

3. The object is saved to the database. (If it fails, we abort here.)

4. The local key is saved from the temporary to the mapping entry.

5. The remote key and version are saved to the mapping entry.

Synchronizing a remotely changed object (Phase 3)
The object is processed as in "updating an object in the local database with a new
server version". In fact, phase 3 just fires an offline operation on all changed
objects.

Forcing an overwrite in the local database

1. The object's remote version in the metadata is set to its current remote
version.

2. The key and version are set from the current local one to force the update.

3. The object is saved to the local database.

4. The local version from the saved object is saved to the mapping entry.

Forcing an overwrite on the server

1. The object's local version is saved to the mapping entry.

2. The remote instance is loaded from the database and the object's key and
version set from it.

3. The object is saved to the database.

4. The object's remote version is saved into the mapping entry.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 244 / 320
ELCA Informatique SA, Switzerland, 2009.

Offlining/Batching strategies

Purpose
Synchronizing a set of data requires each element to be copied at least once. The
strategies described here aim to achieve that a) each element is copied only once
and b) objects can be copied in chunks, that is not all objects need to be copied at
once. A trivial implementation of chunking risks increasing the copy effort for n
objects from O(n) to O(n^2) . THe reason for this is that whenever we copy an
object, all objects it has references to are copied as well.

Strategies

A class is "out-independent" if no two instances of this class depend on each
other. (For instance, several Imputations may depend on the same
ImputationNumber, but no two Imputations depend on each other in the sense
that following any chain of pointers from one leads you to the other. So Imputation
is an out-independent class.)

For such classes we can batch transfers by collecting any number of instances in
an Object[] and transferring the whole array at once. This can only transfer an
object several times within a batch if two instances hold a pointer to the same
logical element of another class, but they are different instances i.e. a and b of
class C1 both have pointers to x of class C2 and a.c2.equals(b.c2) = true but

a.c2 b.c2. This can be fixed by an identity fixing scheme.

If a and b are not in the same batch, the client will either have to resend x when b
is transferred or have an option to transfer b without its dependency x and relink
them on the server.

We can avoid ever sending an object twice if each object graph is sent in one
batch. This leads to the following problems: if a --> x and b --> x (--> = has pointer
to), we need to somehow notice that a and b belong to the same graph. The only
way is to iterate over all objects in the local database and give each a "graph id".
For n objects this takes up to 3n database read/writes (first pass: read objects
and save ids, keeping id links in memory for speed, total 2n operations; second
pass: readjust ids that point to the same graph, time 1n). If we have n elements
with no links between them at all, these are 3n unnecessary operations on the
database.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 245 / 320
ELCA Informatique SA, Switzerland, 2009.

This strategy also allows us to send any number of disjoint object graphs in one
batch.

Call a class "independent" if no two instances can ever have links that meet. (This
covers all classes with no outgoing links at all or with only 1:* multiplicity outgoing
links. Imputation is not independent because two Imputations can use the same
ImputationNumber.) For such classes we do not need any object graph
processing and can batch them in any way we like. Independent is a strict subset
of out-independent.

In the case that all instances of a class form a connected graph (quite possible in
real-world applications), if we transfer objects (trasferring an object takes all its
dependencies with it) we either need to send the whole set of instances in one
batch or resend some instances where we split into batches. If we could
somehow transfer each object individually, breaking the links before sending and
relinking on the server, we can batch however we want. (If we serialize locally,
send the result as binary data in whatever chunk size we wish, and deserialize on
the server again we can control the chunk size but still need to send the whole
graph at once.)

Here is one way to achieve this: Assume each object can a) be saved as and
reconstructed from a mapping of bean properties and b) has a unique id. If a has
a link to b, instead of transferring b with a we look up b's id and only transfer the
id along with a. (Which is pretty much what SQL does: hold a foreign key instead
of the object itself.) We still cannot use a on the server without b, but if we transfer
b first we can send a later (in another batch) and do not need to retransfer b.

Together with graph component searching, this allows us to batch pretty much
anything in any way we want, subject only to the condition that when we want to
save an object to the server database, all its dependencies must be there too. (If
save does not cascade, we might get away with only the direct dependencies
being present. Transitive dependencies just need to be ignored by hibernate.)

Consider a Person class with a "Person parent" and "Set children". In the
database, only the parent pointer is saved (as foreign key) and children is marked
as transient. If we serialize, we risk the children set being serialized along with
any person we send to the server. (We could mark it as transient, but then when

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 246 / 320
ELCA Informatique SA, Switzerland, 2009.

we deserialize we have to somehow restore the links). Even if the connected
component of n Persons is small enough that this does not matter normally, a bad
offlining strategy might send the whole graph n times.

Any serialization must somehow restore the links, unless all we want to do is save
the person to the database in which case we can set children to null. (Getting the
person back is harder, but we can save him to the local database, drop the
Person object and reload from the local database and let hibernate do that work
for us. However, if a child is missing we get "garbage in = garbage out".)

Again if we can transfer ids instead of object references, we send each object
once only, but we do need to track which objects we have already sent so we
never try and reconstruct a partially sent graph.

Offliner test cases

Running tests
The tests have to run for two databases (db2, oracle) with different
implementation details and use two separate schemes (local, remote) in either
case. This pushes the capabilities of maven and the standard plugins (database,
env) to their limits and uses several "hacks" to go beyond those limits. Despite
this, the tests should run automatically when building el4j under either database
at the time of writing.

Strategy-independent tests
testKeyStrategy

Check that LOCAL and REMOTE key ranges are correct in both
databases.

testOffline
Check offline operation works.
Check dependent objects are offlined too.

testOfflineIdentity
Check several offline operations in sequence do not produce clones in the
local database.

testOfflineServerNew
Check offline corrrectly updates new objects from the server.

testOfflineFailOnNew

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 247 / 320
ELCA Informatique SA, Switzerland, 2009.

Check the local database fails if the local databased instance was updated.
testForceRemote

Create a conflict then resolve it by forcing the remote version.
Also check a force on a dependent conflict fails.

testForceLocal
Create a conflict then resolve it by forcing the local version.
Also check a force on a dependent conflict fails.

testDeleteResolution
Provoke a deletion conflict and ensure the resolutuion strategy works.

Strategy dependent tests

All these tests are rerun with all chunking strategies. Each strategy must derive a
subclass.
testOfflineAndCommit

Read test data and save it back again.
This is simple offline-commit operation without modifying anything in the
local database.
It must not produce any problems.

testModification
Modify object contents and references in the local database.
Ensure they are committed correctly.

testCreateInOffline
Create new objects in the local database.
They only acquire a server key on synchronization.
Ensure they are written back correctly.

testDelete
Delete an object in the local database causing it to be marked for deletion
in the metadata and deleted on sync. Ensure this happens.

testDeleteConflict
Delete an object in the local database that has a non-offlined object
pointing to it on the server.
Ensure the conflict is reported correctly.

testDeleteOrder
Ensure deletes are performed in the correct order on the server (important
when there are references between the objects to delete).

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 248 / 320
ELCA Informatique SA, Switzerland, 2009.

Ensure deletes that already fail in the local database do not contribute to
the order.

testWrongDeleteOrder
Force a conflict by messing with the delete order.
Most of this method is like testDeleteOrder, except for a modification to
break the delete order.

testConcurrentFailure
Modify data on the server which is also in the local database, then try and
recommit.
Check the conflict and its dependent conflicts are reported correctly.

testDependentConflict
Check that in a graph of objects where some are conflicted, those that are
not conflicted are updated correctly.

testServerVersion
Ensure that a server version > 0 of data does not change offliner
semantics.

testEvict
Test the offliner's evict function that removes an object from the local
database without causing a delete on the server.

testMultipleSync
Check multiple synchronizations work as expected.
Cases:

• Change in local database.

• Change on server.

Offliner Implementation

The mapping table
Hibernate allows us to work with POJOs and let it handle all the key generation
and management issues. For access to a single database, this makes it easier,
for copying between databases, it is unhelpful. In particular, hibernate will not
allow us to insert a row with a given primary key into a table unless that key
already exists there.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 249 / 320
ELCA Informatique SA, Switzerland, 2009.

To work around this, we store a mapping table which allows us, for each class, to
look up the local and database key. For example, if we have a Bean with key 100
in the database and want to offline it, we first set the key to zero then store the
bean locally. This makes hibernate generate a new key, say -42. We store the
pair (100, -42) in the mapping table. On resynchronizing, we look up the local key
and set the bean's key back to the one it had in the database.

The bare minimum requirements for keys are that

1. Keys are serializable and have proper equals/hashcode implementations
(this is a hibernate requirement).

2. Local and remote keys are distinguishable. No key can appear in both the

local and the remote database. This is required on resynchronisation to
preseve object identity.

The current implementation is that all keys must be of type Long (that is capital-L
to get Serializable) and the database must use positive, the local database
negative keys. It would be nice to do this more generically but there are pitfalls
with java generics if we do not have the precise type available at compile-time
(which is unrealistic).

The offliner accesses keys generically through the aspects package. Extensions
to key type or distinguishing scheme can be made by swapping out the aspects
implementations.

Versioning
Because an object may be locally saved several times in the offlining process, we
store the remote version while offlining and restore it on synchronizing. Further,
we manually update the local versions to eliminate conflicts: If, during the offlining
process, an object is offlined three times

• The first time, it will offline with version 0 (or whatever the server version
was).

• The second time, if it is the same object reference we detect it by the fact it

now has a local key. (The same then happens on pass three.) If it is a
different reference, it will be inserted with version 0 causing the local
version to rise to 1.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 250 / 320
ELCA Informatique SA, Switzerland, 2009.

• The third time, if we did nothing, we would be committing an object of
version 0 when the local database version is 1. This is a conflict.

To prevent this, the local save process is

1. Read the current local version.

2. Set the version on the object to commit to the current local version. This
effectively disables versioning locally.

3. Save the object.

Object graph traversal
Where objects reference other objects, several issues arise:

• Hibernate's lazy fetching strategies mean we cannot access referenced

objects once the session that got the root object is closed, unless they
were already fetched by some other operation.

• When we save an object into the local database, its references become

foreign keys. These must also be adapted to contain the local database's
foreign keys for the objects in question.

While offlining or synchronizing an object - these two are known as operations -
the process is as follows:

1. (For all objects)

1. Iterate over all associated objects.

2. Recursively perform the operation on the associated objects. This

sets the primary keys of the associates correctly, which means
hibernate will generate foreign keys correctly.

2. Perform the operation on the object in question.

This guarantees that whenever an object is saved, all its properties are set
correctly. It is not, however, particularly efficient: saving n objects can generate
O(n^2) save statements.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 251 / 320
ELCA Informatique SA, Switzerland, 2009.

Synchronization and conflicts
While synchronizing, exceptions from the server are wrapped in Conflict objects
and returned at the end of the operation. Mapping entries are marked as
PROCESSED after the first attempt to save them so no object is synchronized
more than once. (This works because synchronize() is called once for the entire
contents of the local database. This technique cannot be used for offline(...) as it
allows for multiple independent offline operations.) If a conflict is encountered
synchronizing a child object, the parent is automatically marked as conflicted
(dependent conflict).

Algorithm choice
The current synchronisation algorithm guarantees that all changed objects are
synchronized by iterating over all objects and cascading on each object's graph.
This has one efficiency drawback : If the objects have cascade&eq;SAVE set,
hibernate will cascade too potentially resulting in O(n^2) database commits for n
objects. This can be avoided if hibernate notices itself when it is trying to
recommit an object it has just saved already - n^2 operations im memory are
certainly cheaper than on the database.

The offliner design was based on the abstraction that only remoting dao-proxies
are available server-side. If we could have a separate offlining process running on
the server and use this instead, we could handle the server's session
management ourselves and ensure that objects are neither sent multiple times
from client to server during one synchronisation, nor - if we can do the whole
synchronisation in one server session - written multiple times to the database
(hibernate's session cache would then prevent this).

Another algorithm we discussed involved having the offliner store the list of
operations on the local database (updates etc.) and then send this list to the
server which executes it again during synchronisation. As I did not implement this,
I cannot say for certain whether it would work - I see no reason why it should not
in theory. However, instead of sending the end result of the user's edits in the
local database, it would mean sending the whole history. For example, changing
an object 10 times would mean sending it not once but 10 times to the server and
saving it 10 times to the database there. (In the case of a single object, this could
of course be optimized trivially - it is multiple modifications of object assocations I
am worried about).

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 252 / 320
ELCA Informatique SA, Switzerland, 2009.

The concept of an object's identity plays a central role here. With one database, a
primary key is a simple choice of identifier. With two, we need to manage two
primary keys (local and remote) for each object and further take into account
newly created objects that have no key yet. Transferring a list of object operations
like "A.setParent(B)" to the server would mean matching the client-side and
server-side identities of A and B up. I also noticed that a "unique object identifier"
of type (Class X PK) is a central building block of object identity management.

Further, if a client makes 10 changes to an object locally then synchronizes, it
seems logical to me that the server's version of this object rises by 1. Currently,
this is the case. If we replay the edit history, it would rise by 10.

Offlining is an example of where an abstraction (hibernate, ORM) that makes one
thing easier (persisting objects in a single database) creates a whole host of new
problems when something that the abstraction was not designed for (offlining) is
attempted. For example, the whole association management becomes more or
less straight-forward when done in plain SQL. However, we want a solution that
does not depend on low-level details of our database (and thus is open to
incompatibilities between different database types, for instance) and so switching
back to plain SQL is not an option.

What would be possible - and interesting - is a new kind of database-independent
"object-oriented query language" which can be used for transmitting object
changes to the server. I envisage something like "UPDATE Person:1000
parent=Person:2000" to mean "On the instance of Person with key 1000, call
setParent using the Person with key 2000 as argument". This would mean no
actual domain objects ever have to get sent to the server. (Person:1000 is again
an "unique object identifier" as stated above.)

Offlining
This page describes the offliner's offline operation.

Offline copies a selection of objects to the local database. They must be database
instances in the sense that

1. They are instances of entity classes for which a table exists in the local
database.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 253 / 320
ELCA Informatique SA, Switzerland, 2009.

2. Their class is declared in the offliner's list of classes to manage (when
resynchronizing, the offliner iterates over this list).

3. They have an id set that makes them uniquely identifiable and recognizable
as coming from the database. In particular, this id must not be null/zero.
(To save new instances of entity classes into the local database, get a dao
from the local database and use its save method instead.)

4. All FK associations of an object must be resolved at the time it is passed to

offline. (We cannot save objects with and unresolved lazy FK references in
their object graph to a database.)

If the objects passed to offline do not exist yet in the local database they are
created. If they exist under the same version as the new one to offline, the objects
are ignored. If the version in the local database is older than on the server, the
object is updated as long as it has not been modified in the local database.

One consequence of this is that if you check out an already offlined object from
the server, modify some data then try to offline it, it will not be offlined again
because the version is unchanged. This would lose your changes. The correct
procedure is first to save it back to the server, then reload it (with the new version)
and then offline it. Alternatively, load the local databased version and modify that
then save it back to the local database with a regular save. This procedure is
required to ensure the object can be recommitted to the server afterwards. As a
general rule, anything passed to offline should come directly from the server's
database.

Any object added to the local database is on synchronize returned (updated) to
the server with the same id/PK and version. Any other changes made to it are
kept.

You can offline the same object many times in a row. The offliner ensures there
will not be an exception here. Internally, the offliner may offline something several
times in a row during processing of an object graph. The version in the local
database should not rise in this case.

Offline only runs on the object graph rooted at the object(s) you pass it. It is
primarily (when called by the user) meant to add new objects to the local

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 254 / 320
ELCA Informatique SA, Switzerland, 2009.

database that are not there yet. To update all objects already in the local
database, use synchronize. Internally, synchronize calls offline on the objects
changed on the server.

If the local database is non-empty, you should synchronize before offlining any
new objects. Offline can only fail if an object has been changed both in the local
database and the database. Objects unchanged on the server since the last
offline are ignored.

Offline does not provide conflict management - if you synchronize before offlining
and the synchronize succeeds, there will not be any offlining conflicts.

There is one other rare case that causes an offline exception: Trying to update an
object of an older version that you offlined it as earlier. This is a bug in the
application calling the offliner, as database versions do not decrease over time.

Synchronization

Synchronize ensures that, unless there is a conflict,

• All changes made in the local database are written to the server.

• All offlined objects that have in the meantime been updated on the server
are updated in the local database too.

If there is a conflict,

• All objects that have been updated both in the local database and on the
server cause a Conflict.

During the whole of a synchronize operation, neither local nor database data
should be externally modified.

Each object - identified uniquely by the pair (class, PK) - is processed exactly
once by the synchronization process. (However, if an object's save results in a
cascade, these extra saves are not under the control of the synchronization
process.)

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 255 / 320
ELCA Informatique SA, Switzerland, 2009.

Phases
Synchronization runs in three phases. If a conflict occurs in a phase, subsequent
phases are skipped. This allows us to assume previous phases were successful
and depend on them in later phases.

The phases are

1. Synchronize changed data in the local database.

2. Synchronize deleted data in the local database.

3. Synchronize unchanged data in the local database.

Changed data
All objects that have been changed in the local database are passed to the server
once for synchronization. They can either be successful or fail. This step runs as
in offliner 1.1 except that the metadata may be differently implemented and
organized. Further the metadata is updated by the server as, unlike 1.1, it is not
deleted but written back after the synchronization.

From the database's point of view, it must act as if the objects had been loaded
by the user, modified and saved back directly. In particular, an object's id and
version must be the same when synchronize saves it back than when the user
offlined it.

Deleted data
This is the simplest to process. All deleted objects are deleted on the server in the
order they were deleted on the client using the metadata.

Unchanged data
The issue here is that it may have been changed on the server thus producing
stale data on the client. This phase only runs when the previous two completed
successfully so we can never get a client-side conflict in this phase.

All unchanged entries are queried by version from the server which checks if they
have been updated and sends them for updating if they have.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 256 / 320
ELCA Informatique SA, Switzerland, 2009.

Conflict resolution
There are several resolutions for confclicts. The former concern objects updated
both on the client and the server since the last sync, the latter deletion conflicts.

For an object updated both on the client and the server, we recommend showing
the user the two versions and deciding which one he wants to keep. Then, calling
either forceLocal or forceRemote forces the given version to overwrite the other
ignoreing versions. This requires some trickery to break hibernate's optimistic
locking and must only be done during a period of time when you have an
exclusive lock on the database. Note that force only forces the object passed as
parameter. If it failed to sync because something it depends on failed, you must
sort out the source of the conflict first before dealing with dependent conflicts.

Deletion fails in the following scenario: On the server you have objects A and B
where a depends on B. You offline only B and delete it in the local database. This
is ok because there is no A there. On sync, the offliner tries to delete B in the
database and gets a constraint violation from A. You have two options: Delete A
manually on the server and resync, or declare the deletion of B void. After you
have deleted all you want to delete on the server, eraseDeletes declares all
pending deletions void.

Mapping entries
Each domain object has offliner metadata associated with it. This is represented
by the MappingEntry class and can be accessed as if it were a bean property of
the domain class via the aspects package.

Offliner metadata is persistent in the local database. However, where an object's
metadata would only contain default values or values derivable from the object
itself it is allowed not to store any metadata and return a new instance of
MappingEntry in the getter.

Mapping entries contain the following properties:

• Local and remote unique keys that identify the object.

• The base version under which the object was last offlined.

• A delete version. This is 0 unless the object is pending deletion in which
case it indicates the order in which the objects must be deleted.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 257 / 320
ELCA Informatique SA, Switzerland, 2009.

The local database status was a property of hte mapping entry in 1.1. It is now
recompupted when needed based on the object an the mapping entry. Because
the mapping entry for RMI efficiency reasons cannot contain a link to its object,
offline status is a separate aspect. It takes the following values:

• NEW if an object has been created in the local database and never
synchronized.

• OFFLINED if the object is offlined and has not been changed in the local
database.

• CHANGED if the object is offlined and has been changed in the local
database.

• DELETED if the object has been deleted from the local database but is
pending deletion on the server.

The status can be queried by comparing the version and keys of the object with
those of the mapping entry. In addition, during synchronization operations the
following states can occur:

• PROCESSED if the entry has been processed successfully in the current
sync operation.

• CONFLICTED if the entry has caused a conflict.

These must be set back to other values (PROCESSED becomes OFFLINED,
CONFLICTED CHANGED or DELETED) when the sync operation ends even if it
ends in failure.

Key Management and Requirements

This page contains the requirements and implementation of the offliner's key
management.

Requirements

1. The offliner must be able to save a generic key in a field of the mapping
table.

2. Keys must form three disjoint nonempty sets NULL, LOCAL and REMOTE.

3. New instances of objects must have a key from NULL.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 258 / 320
ELCA Informatique SA, Switzerland, 2009.

4. Objects with NULL keys must be insertable into any database and get a

generated non-NULL key, namely from REMOTE in the remote database
and LOCAL in the local one. No key of these sets may ever be generated
twice (except if the database is reset) even between different runs of the
application. Notes: Clearing the local database after a synchronize is a
database reset in the local database. While NULL can and usually will
contain one element, LOCAL and REMOTE must contain at least as many
elements as there will ever be objects.

5. equals() on domain objects fulfills the hibernate contract.

6. The offliner must be able to reset keys to a NULL value. equals() must then
treat the object as new.

The hibernate contract for equals() is

1. For any object a, a.equals(null) is false. This is part of the java contract.

2. For any object a, a.equals(a) is true. In fact a = b implies a.equals(b) =
true. This is part of the java contract.

3. For any object a that has not yet been saved to the database and got a
key, a.equals(b) nust be false except if a == b.

4. For any objects a, b (of the same class) that both have been saved and
thus have keys, a.equals(b) if and only if the keys are equal.

Default implementation (for derby/db2)

1. The key field is of type VARCHAR, keys of String, Integer and Long can be

saved and read via an extra class. They are prefixed with S, I or L to
distinguish.

2. Keys must be of type Long. 0L is NULL, >0 is REMOTE and <0 is LOCAL.
Negative keys are not possible in Oracle!

3. New objects get their field of type long automatically initialized to 0L by
java.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 259 / 320
ELCA Informatique SA, Switzerland, 2009.

4. The NULL convention matches that of hibernate. The remote database

uses a sequence (start with 1, increment by 1) and the local database
starts with and increments by -1 respectively.

5. equals() in the example base class tests for key == 0L and acts acordingly.

6. setKey(0L) is a reset.

Test implementation for oracle
Here we use key ranges of 0-2000000000 for the REMOTE and 2000000000-
4000000000 for the LOCAL database. The boundaries are not included. This
class is currently available in the tests package only.

Custom implementations
Of the default implementation,

1. New types can be added by extending GenericSerializableUtil.

2. For a new type added in 1. or a String or Integer type, you need to provide
a TypedAspect implementation that distinguishes key types.

3. The default value new instances of your domain objects get must be a
NULL value.

4. It is your own responsibility to make your conventions hibernate- and
database-compatible.

5. This is your own responsability.

6. Your TypedAspect must provide a nullKey implementation that resets a key
to a NULL value.

The Graph Walker

The object graph walker algorithm traverses an object graph starting from a root
object and following all links. The precise meaning of link is defined externally by
the Linked implementation passed in the aspects object to the graph walker.
Object graphs are directed; no other assumptions are made (loops, multi-edges
and cycles are all allowed).

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 260 / 320
ELCA Informatique SA, Switzerland, 2009.

The graph walker requires two parameters: An ObjectWrapper that provides
Linked and UniqueKeyed and a NodeVisitor that it can run on each node.

The following node states are used: All nodes that have not yet been seen are
NEW. When a node is first discovered, it becomes PENDING. It is then passed to
preVisit which can override its state; if an override happens it is treated as if it had
been that state before (i.e. if it is overridden as PROCESSED, no further
recursion will be done). Each node can be reached as NEW at most once (exactly
once unless overridden).

A PENDING node becomes PROCESSED once all of its children have been
successfully processed. Immediately before becoming PROCESSED, a node is
passed to visit . PROCESSED nodes are not touched again.

A node can also become ERROR, indicating a problem. All nodes with links to
ERROR nodes are guaranteed to end up as ERROR as well. Nodes become
ERROR in three ways:

1. Visit throws a NodeException.

2. A linked/child node is ERROR.

3. preVisit overrides the node as ERROR.

ERROR nodes are not touched again by the graph walker.

The node state determination is shared between the walker and the visitor. The
walker resets its state memory every time it is run on a new root; any stored state
information between runs must be handled by the visitor. This is why the override
mechanism exists. Only nodes that are NEW from the walker's point of view are
passed to preVisit and are guaranteed to lose NEW status afterwards (PENDING
if the visitor does nothing, ERROR or PROCESSED if it overrides).

The justification for this is that it is best suited to the purposes of the offliner. A
more general graph walker would manage state information itself, allowing it to
correctly handle a node linking to another seen in a previous run itself.

The contract between the walker and its visitor is as follows:

1. All nodes that are reachable from the current root will be passed to the

visitor's preVisit exactly once, namely at the time they are first discovered.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 261 / 320
ELCA Informatique SA, Switzerland, 2009.

The visitor can return NEW to indicate normal processing or override with
ERROR or PROCESSED.

2. Nodes that the visitor does not override are passed exactly once to the
visitor again after all their children have been processed; they are passed
to

1. visit if all children are PROCESSED.

2. markError if any child is ERROR.

The walker's algorithm on a node is:

1. If the node is not NEW, ignore it.

2. If the node is NEW, pass it to preVisit. If it overrides, mark it with the new
state and ignore it.

3. If preVisit keeps it NEW, set it to PENDING and recurse on all children.

4. If any children are ERROR, mark it as ERROR and call markError on the
visitor.

5. If all children are PROCESSED, call visit. If it succeeds, make the node
PROCESSED, otherwise ERROR.

Node identity is determined by UniqueKey objects. Two nodes are equal if and
only if their unique keys are equal. If a different instance im memory is seen that
is equal to a previously seen one, it is treated as the same node for state
purposes (states are in fact stored as a map of UniqueKey to NodeState).

The Object Wrapper

The ObjectWrapper is now part of module-hibernate. It was developed for the
offliner and formerly known as the "aspects package".

Motivation

The offliner works with the concept of a "generic domain object". These can be of
any domain class and are known to have some properties like "primary key" or

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 262 / 320
ELCA Informatique SA, Switzerland, 2009.

"version". In addition, they all have "properties" imposed by the offliner like a
mapping entry (mapping entries and domain objects are in a 1:1 relationship) or a
unique key.

This package came into being because the code for dealing with this became
messy and introduced unwanted dependencies. For instance, the object graph
walker needs information about an object's identity (i.e. its unique key). This can
be got from hibernate. Earlier, this meant the object graph walker had a
dependency on hibernate's session factory which is not good design.

The wrapper package separates the different interfaces (Keyed etc.) that the
walker or offliner use from the implementation. In fact the mapping table has two
different implementations on the client and on the server.

Other Approaches

This was written at the time of development when it was unclear which solution
would be best. The current implementation using the wrapper package is the one
that was chosen.

Having the graph walker load keys from the hibernat e session factory is an

unwanted and unnecesary dependency.

Requiring domain objects to implement the necessary interfaces (Keyed)
themselves i.e. in an AbstractDomainObject class would be an elegant object-

oriented solution. But it is implausible for two reasons:

1. We want to be able to plug the offliner into an existing application. The

application should have the offliner as a dependency and not the other way
round. Therefore we cannot mandate a base class for domain objects nor
access such a class in both the application and the offliner.

2. Wrappers like UniqueKeyed or Mapped are offliner-specific, so it makes no
sense to require application classes to implement them. Also it prevents us
from choosing different implementations (on the client and server).

Having one utility class to deal with all wrappers might look like this:

public class DomainObjectUtils {

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 263 / 320
ELCA Informatique SA, Switzerland, 2009.

 public static Serializable getKey(Object object) ;

 public static void setKey(Object object, Seriali zable key);

 public static long getVersion(Object object);

 public static void setVersion(Object object, lon g version);

 // ...

}

You might be able to do this in C, in java this kind of code smells. It is one of the
motivating examples in Object-Oriented Programming 101 that this kind of code
can be done better.

Having one big wrapper class instead of several sma ll ones. This may well

be the final form of this package, but I find several small (fit on one page) classes
with a clear purpose easier to use and maintain than one big class for five
purposes. Also, if one of the apsects needs to be varied from client to server
(mapping table) whereas the others stay the same, there is no way around using
several classes.

This does not preclude merging some wrappers, for instance KeyedVersioned,
UniqueKeyed and Typed could all become something like DomainObject - this
would lose us the option of casting to Keyed objects for which we do not want to
do offlining and so never need unique key or type information but admittedly such
objects are never used by the offliner at the moment. All offliner-related wrappers
could be united in one OfflineableWrapper too. I still think it is cleaner to separate
unrelated wrappers but it won't harm anyone to merge them.

This decision proved valuable when the tests were adapted to run on oracle too.
Only one wrapper had to be re-implemented.

Using Wrappers

We have a domain object obj given and want its key. What we would really like to
do is "key = obj.getKey();" . Wrappers allow us to do this with only one extra line
of code:

Keyed objKeyed = wrapper.wrap(Keyed.class, obj);

key = objKeyed.getKey();

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 264 / 320
ELCA Informatique SA, Switzerland, 2009.

objKeyed can be kept around for further key-related operations. A setKey() on it
sets the key in the actual object obj, to which it holds a reference.

The main class of the wrappers package is called ObjectWrapper. To set it up,
create a prototype of each wrapper implementaion (the reasoning is explained
below), create a wrapper object and link them up:

ObjectWrapper wrapper = new ObjectWrapper();

UniqueKeyed uk = new UniqueKeyedImpl();

wrapper.add(UniqueKeyed.class, uk);

Or using spring:

<bean id="wrapper" class="ch.elca.el4j.util.objectw rapper.ObjectWrapper">

 <property name="wrappables">

 <map>

 <entry

key="ch.elca.el4j.services.persistence.hibernate.of flining.objectwrapper.Un

iqueKeyed"

 value-ref="uniqueKeyed" />

 </map>

 </property>

</bean>

<bean id="uniqueKeyed"

class="ch.elca.el4j.services.persistence.hibernate. offlining.objectwrapper.

impl.UniqueKeyedImpl" />

To use a wrapper on an object, call wrap(wrappable, object) . If the object already
implements this interface, it is returned unchanged. If not, the wrappable is looked
up in the wrapper object's map of registered apsects. If it is not found, an
ObjectWrapperRTException is thrown. If it is found, the wrapper is set up for this
object as described below. This too can throw an ObjectWrapperRTException if it
is impossible to handle the wrapper for this object (like Keyed on something that
is not a domain object).

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 265 / 320
ELCA Informatique SA, Switzerland, 2009.

To check if a wrapper is registered, boolean wrappablePresent() exists. The
version taking an object also returns true if the object already implements the
wrappable interface. None of these methods can guarantee that wrapper creation
will not fail due to an exception from the wrappable implementation, though.

The ObjectWrapper package implementation

The wrappable interfaces all extend the Wrappable interface.

Implementations are named by adding an optional identifier (when several
implementations exist) and then "Impl" to the name or the wrappable. For
example, Typed becomes TypedImpl and KeyedVersioned has
KeyedVersionedHibernateImpl and KeyedVersionedReflectionImpl.

ObjectWrapperRTException is thrown by any object wrapper package class when
an illegal operation is attempted. This inlcudes

• Trying to use a wrapper for which there is no implementation (at creation
time)

• Trying to use a wrapper on an object that it can not be used on (it is best to
complain at creation time, but it is feasible that in some situations the
problem can only be detected later when a wrapper method is actually
called).

InternalObjectWrapperRTException is thrown if a "this can never happen" line is
reached in ObjectWrapper or an implementation and indicates a serious bug in
the object wrapper package.

The base class of all implementations is AbstractWrapper. This is required for
now. Because interfaces or base classes cannot mandate constructors and I do
not want to make this requirement implicit (via reflection), I use the prototype
design pattern. Prototypes of the implementations are added to the
ObjectWrapper class, when one is required it is cloned (Cloneable is declared in
AbstractWrappable and all implementations must allow cloning) and these
protetced properties are set: m_target is the object we are creating a wrapper for,
m_wrapper is the object wrapper itself. (This allows one wrappable to depend on
another.) Next, create() is called. This is the effective "constructor" and must
prepare the wrapper or throw ObjectWrapperRTException if there is a problem

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 266 / 320
ELCA Informatique SA, Switzerland, 2009.

like an object that cannot be used with this wrapper. If create() returns the
wrapped object is returned to the user.

If a wrapper requires external dependencies like hibernate's session factory, they
can be passed in the true constructor (for the prototype). This is independent of
the ObjectWrapper class which only sees the finished prototype. The prototype
pattern thus allows instantiation of the wrapper class itself to be decoupled from
instantiation for a specific object. One nice side-effect of this pattern is that all
required classes can easily be declared as spring beans. As the cloning is done
by the ObjectWrapper class, no spring prototype qualifier is required.

Writing your own wrappers

Suppose you want to create a ValidatableWrapper that performs validation on
objects.

1. Create an interface Validatable extends Wrappable.

2. Create an implementation ValidatableImpl extends AbstractWrapper
implements Validatable.

3. In the constructor of your implementation, load any dependencies (to the

validator, perhaps) that your wrapper will need. Remember that this is a
prototype.

4. In create(), you can check if an object actually is validatable. When create()

is called, the wrapper object creating the implementation (a clone of your
prototype) will have m_wrapper set to itself and m_target to the object this
clone should refer to. Throw an ObjectWrapperRTException if it is not a
valid object. If you need to "import" other wrappers, check they are present
with m_wrapper.wrappablePresent(wrappableClass) and throw an
excpetion if not.

5. Implement the wrapper methods (validate, for example). They can use
m_target and m_wrapper as they please. They can also throw
ObjectWrapperRTException if necessary.

In your application,

1. Instantiate the implemantation once (prototype) with its dependencies.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 267 / 320
ELCA Informatique SA, Switzerland, 2009.

2. Register it with your wrapper object.

Naming

I originally called this package aspects because that was what I was designing it
as. However, aspects can be quite complicated both as a concept and to
implement.

The package has since been renamed to "object wrapper".

There are no dynamic proxies, bytecode modification, cglib or anything else
involved in this package. The original objects can be used further after they have
been wrapped.

Version History and Future Plans for
Cacher/Offliner

Before "0"
Before the name Cacher was used, the project started off as UniversalData /
DataExpressionBrowser. It displayed simple tables of data. Its advantage was
that it worked with the abstraction of a DataExpression which was very generic.
This approach was found to be insufficient when dealing with database objects
that carry associations between each other.

The next installation was a generic DatabaseBrowser. It allowed database entities
to be accessed in a strongly typed way and references to be manipulated. It still
exists (so does the DE-browser) and could be very useful in other scenarios than
the one the cacher was made for. One of its modules, namely the DetailWidgets
for displaying and editing typed data (and for editing database instances by
displaying a list of DetailWidgets for all the object's properties) provided some of
the ideas for the current version of a table data widget in the EL4J framework.

Caching was a submodule in each of these projects. The difference to the cacher
("0" upwards) is that the cacher is designed to be a separate pluggable module
independent of the client/user interface/gui/business logic. However, an
imputations demo was made that shows the cacher in operation and that is based

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 268 / 320
ELCA Informatique SA, Switzerland, 2009.

on, though much less generic than, the database browser. This demo itself is split
into a generic GUI/database part and a specific imputations part.

Cacher "0"
This first version of the cacher provided an independent module for all caching-
related tasks and a first version of graph walking with a separated walker/visitor
implementation and algorithm. It defined the cacher interface with synchronize
and cache operations.

Cacher 0.1
This was completed on the 31st of July 2008 and features, compared to "0"

• An aspects package. This separates aspects the cacher or graph walker

used like "keyed" or "link" (i.e. from a parent to a child object) from
implementations (hibernate, reflection etc.).

• A new graph walker and node visitor package. The walker was completely
rewritten to take advantage of the aspects package and use only generic
access to its graph objects and to allow for some optimizations. The node
visitor can override objects' states in one graph if it (or the cacher) has the
necessary information from a previously handled graph reducing
unnecessary database or remoting calls.

• Split between client and server. A caching server now runs on the server to
allow chunking operations.

• Chunking. A strategy can be given for each class that allows chunks of

objects to be sent to the server rather than a new remoting call for each
object.

• Recovery from confclicts. All conflicted objects are returned with their key
and version set correctly for the remote database allowing the user to
attempt a manual recommit if he can deal with the conflict's source.

• More tests and example for the new graph walker.

Cacher 0.5
Cacher 0.5 allows multiple edit cache/edit server/sync operations to run in any
order. To allow this, it saves the base version of an object both in the database

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 269 / 320
ELCA Informatique SA, Switzerland, 2009.

and cache while it operates on it. One nice side-effect is that versions can be
restored whenever an object moves from one database to the other and some
potential unwanted overwrites are prevented during recaching.

Conflict resolution strategies are provided that allow you to choose the version of
a conflicted object you want to use.

Instead of saving it in the mapping entry, the local database state is now
recomputed when needed. This is necessary for multiple sync operations. Also,
the last sync version of an object it saved in the mapping entry. This allows
objects unchanged since the last sync to be skipped in the next one.

Offliner 0.6
• The aspects package has been renamed object wrapper and incoroporated

into module-hibernate. The cahcer only provides extra wrappables and
implementations.

• The generic to/from string handling is implemented cleanly and extensibly
using strategy objects.

• The bug in the property dao is fixed; cacher properties (last commit) are
written to database.

• Integer and long are both recognized by the default type distinguisher.

• Cacher renamed to offliner.

Offliner 1.0-SNAPSHOT
The offliner has since been integrated into EL4J internal as module-offliner; the
first version number there was 1.0-SNAPSHOT.

Offliner 1.0.1-SNAPSHOT
A few minor changes: Since the EL4J base domain class was adapted to be
offlining-capable, the offliner can use it directly. The strategy pattern for
synchronization strategies was made cleaner and more extensible with a new
interface; the chunk size for out-independent classes is now configurable via
parameter. Offliner tests are finally automated and run through in a normal build

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 270 / 320
ELCA Informatique SA, Switzerland, 2009.

thanks to a new test starter/stopper package. More detailed information is
provided with conflict objects.

Project: Change tracking.
Change tracking can be used independently of the cacher to save unnecessary
database/remoting operations when a set of data is checked out to memory,
edited in place and recommitted. (This is caching too but the lack of a local
database means that the whole key/version/cache management is unnecessary.)

Change tracking could be used to implement a wholly new kind of cacher which
saves changes instead of objects and replays them to the server. Some solution
to the problem of inefficiency incurred by having to send a complete version
hsitory instead of just the latest changes will need to be found first.

Project: Identity fixing.
There is already an identity fixer but it does not work in the cacher scenario where
object identities change. Also, it is not very efficient recursing on absolutely all
fields like the static singletons of the map class internals. A new object identity
fixer based on the generic concept of unique keys could be made as a graph
walker node visitor.

-- DavidBernhard - 14 Jan 2009

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 271 / 320
ELCA Informatique SA, Switzerland, 2009.

Exception handling guidelines
For an introduction to general rules of exception handling in Java, please refer to
chapter 2 of LEAF 2 exception handling guidelines.

Topics
• When to define what type of exception, normal vs. abnormal results

o What results are signalled with exceptions?

o Use checked or unchecked exceptions?

o When to define own exceptions, when to reuse the existing ones?

• Implementing exceptions

• Where and how to handle exceptions

o Who handles what exceptions?

o How to handle exceptions?

o How to trace exceptions?

o How to throw an exception as a consequence of another exception?

• Related useful concepts and hints

• Antipatterns

• References

When to define what type of exceptions? Normal
vs. abnormal results

Throwing exceptions is expensive (in some examples up to 800 times slower than
returning a "normal" value!). Therefore exceptions should be used for exceptional
cases only (i.e., for cases that do not occur frequently).

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 272 / 320
ELCA Informatique SA, Switzerland, 2009.

A method invocation on an interface can have 2 fundamentally different type of
results:

• Normal results : the result matches the level of abstraction of the interface.

Examples: If one tries to make a withraw on a bank account, possible
results are: ok, that the account is overdrawn or locked. These are normal
and expected events, on the same level of abstraction than the interface.
Normal errors that are expected (i.e. a subset of normal results) are often
also called business exceptions.

• Abnormal results : these results are not on the level of abstraction of the

interface. They reveal implementation details and/or are for very unlikely
events. The caller can typically not do much in response to an abnormal
result. Such results are typically best handled on a higher level (often
global for an application). Abnormal results are also appropriate to signal
that the method was used improperly (e.g. when a precondition has been
violated). Abnormal results are also used for situations that can't be
handled during runtime. Examples: OutOfMemoryError,
PreconditionRTException, SQLException indicating that the connection to
the database is lost, RemoteException, ...

We will see later that we typically use checked exceptions for normal results and
unchecked exceptions for abnormal results.

Further examples
Because this is a very important distinction, here are some more examples.
Whether a result is normal or abnormal depends on its context:

• Method Account.withdraw()

o normal results: ok, overdrawn or locked

o abnormal results: RemoteException (of RMI), SQLException
Rationale: They have nothing to do with the withdraw method, they
are an implementation detail.

• Method DatabaseAccessLayer.connectDb()

o normal results: ok, not ok (not ok may be the same thing as the
SQLException of the previous example: in this context it is normal)

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 273 / 320
ELCA Informatique SA, Switzerland, 2009.

o abnormal results: RemoteException (of RMI) Rationale: RMI has

nothing to do with databases accesses, it's an orthogonal issue.

• Consider an order system of an online-shop. Every 1'000'000th customer
gets a gift. Such a result is sufficiently rare that we could say it is abnormal.
(So something abnormal does not need to be a mistake!) We could
therefore throw a runtime exception for this abnormal case.

How to handle normal and abnormal cases

For normal results that are expected special cases (including expected errors)
we use checked exceptions or special return values . One should be

conservative with checked exceptions. Avoid many newly defined checked
exceptions. This leads to many catch blocks in the code (this makes the code
longer and harder to read). Try also to avoid having a method throwing too many
checked exceptions. Such a method can be very cumbersome to use. (As a bad
example, please have a look at the Java API for reflection (package
java.lang.reflect)). Signaling special cases via return values is sometimes
appropriate when the event occurs often (due to the implied performance
overhead of exceptions).

We use unchecked exceptions to inform about abnormal results . As with

checked exceptions, try again to avoid too many new exceptions. Names of
unchecked exceptions should have a RTException suffix.

Remark: The RemoteException of RMI violates these guideline, as it should be an
unchecked exception. (Many people consider this a design mistake of RMI.)

Implementing exceptions classes

You can use the classes BaseExceptions and BaseRTExceptions as base
classes for new exceptions. These classes provide base support for exception
internationalization.

Do not use the string message of an exception to differentiate among different
exception situations. For example, one should not use in a project just one
exception class (e.g. the predefined BaseException) with different String
messages to differ between situations. This bad practice makes it hard to react

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 274 / 320
ELCA Informatique SA, Switzerland, 2009.

differently in function of what happened (as it would require parsing the exception
message), it would also not allow adding particular attributes to the exception
class, and would not document what type of exceptions can be thrown in a
method signature. Finally, it would make exception message internationalization
harder (because one would need to parse the exception message first).
Sometimes it is desirable not to write one exception class per exception situation
(e.g. there may just be too many exception classes). In such cases on can use a
common base exception class and use an error code to differentiate between the
exceptions.

We recommend not to make a difference between exceptions of EL4J code and
exceptions of applications using EL4J. (This means that the same rules apply and
that there is no separate exception hierarchy for the two contexts.)

Remember that one should avoid adding too many new exceptions. You can
reuse (i.e. use in your method signatures) exceptions of the JDK. Frequently
useful candidates are IllegalArgumentException or IndexOutOfBoundsException.

Handling exceptions

Where to handle exceptions?

Normal results of invocations should be handled by the code making the

invocation. Optionally it may make sense to propagate the exception to the caller
of the invoking class (in other words: up the calling stack).

Abnormal results (those returned via unchecked exceptions) are typically

passed up the calling stack and handled on a higher level (not directly where the
invocation was made). Handle an abnormal result only if you can really do
something against the problem or if you are on the top-level of a component that
is responsible to handle all abnormal cases. A pattern that separates the handling
of abnormal situations in a nice way is the SafetyFacade.

How to trace exceptions?

One should not trace normal results (including exceptions that signal normal
results!) of method invocations. (Unless there is some external requirement for
this.)

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 275 / 320
ELCA Informatique SA, Switzerland, 2009.

Abnormal situations should be traced where they are caught.

Please refer to TracingInfrastructure for more detail on general tracing. Typically
one uses error or fatal priority levels when tracing abnormal situations.

Rethrowing a new exception as the consequence of a
caught exception

Try to avoid making too many such exception translations (i.e. in a catch
statement translate an exception by throwing another exception for it). If you do it
anyway, you should wrap the caught exception in the newly thrown exception (in
order not to loose information). The Exception class of JDK 1.4 provides support
for this.

Related useful concepts and hints

Add attributes to the exception class

As Java exceptions are classes, it is possible to add attributes to exception
classes. This can be useful e.g. to include information needed to fix the abnormal
situation or to provide more information about the exceptional situation.

Such attributes are particularly useful when the exception is treated
programmatically (e.g. to do something in function of the value of such attributes).
Having these attributes explicitly as attributes and not just embedded in the error
message avoids that the error message needs to be parsed. In addition, it helps
to internationalize exceptions. See also the example of the BaseException class
that illustrates how this can be used with JDK MessageFormats. The string
message of exceptions should contain all attributes that are useful for someone
trying to figure out what went on. (We don't print automatically all attributes of
exceptions.)

Mentioning unchecked exceptions in the Javadoc

Sometimes it is useful to mention unchecked exceptions that can be thrown by a
method (even though this is not required by Java). This can be made in the code
(one has the right to add an unchecked exception to the throws definition of a

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 276 / 320
ELCA Informatique SA, Switzerland, 2009.

method) or in the Javadoc. This makes the user of the method aware of the
unchecked exception that may be potentially be thrown by the method.

Checking for pre-conditions in code

Assumptions a programmer of code makes about how the code is used, are
called pre-conditions. Violated pre-conditions are abnormal situations. Therefore
one should use unchecked exceptions to indicate pre-conditions. Pre-conditions
are checked in the beginning of the body of method implementations. One should
keep such checks in the code of publicly available methods even if the code is
deployed in a production environment. Such pre-condition checks are particularly
useful when a component is used after its creation or in another context.
Rationale: such pre-conditions check that the assumptions of the programmer are
valid. Do not use assertions to check the parameters of a public method.

There is a Reject class (in the core module) that helps to support this usage. This
usage is also recommended in the assertion guidelines of sun. (We refer to the
text: "By convention, preconditions on public methods are enforced by explicit
checks that throw particular, specified exceptions.") We propose to check such
preconditions on public methods via the Reject class.

Sample use:

public void saveAccount(Account x) {

 Reject.ifNull(x, IllegalArgumentException.class, “x must not be null");

 // throws an IllegalArgumentException if x == nu ll

An alternative to this class is Spring's
[[http://leaffy.elca.ch/java/javaTechnologyDoc/extracted/spring-framework-
2.0.2/docs/api/org/springframework/util/Assert.html][Assert] class. Please refer
also the the AssertionUsageGuidelines for more details about assertion usage.

Exception-safe code
Exception-safety is a property of well-implemented code. There is weak and
strong exception safety.

For a method m() that is weakly exception safe , the following conditions hold

when it throws an exception:

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 277 / 320
ELCA Informatique SA, Switzerland, 2009.

1. m() does not complete its operation.

2. m() releases all the resources it allocated before the exception was thrown.

3. If m() changes a data structure, then the structure must remain in a
consistent state.

In summary, if a weakly exception safe method m() updates the system state,
then the state must remain reasonable.

Strongly exception safe methods additionally verify the following condition:

• If a method m() terminates by propagating an exception, then it has made
no change to the state of the program.

Both exception safety properties are desirable. However as the implementation of
strongly exception safe methods can be quite tricky, we only require methods in
EL4J to be weakly exception safe. Please refer to § 3.5.1 of the LEAF 2 exception
handling guidelines for more details.

Handling SQL exceptions
To handle SQL exceptions, we strongly recommend the helper classes of the
spring framework. This support is sometimes referred to as Spring's generic
DataAccessException hierachy. To profit from this hierachy, use the Spring
simplification templates for integration of iBatis or Hibernate. This allows profiting
from this hierarchy almost for free. EL4J provides an improvement to this
exception mapping, please refer to the file sql-error-codes.xml of the core module
and the package ch.elca.el4j.services.persistence.generic.sqlexceptiontranslator.

Exceptions and transactions
Transactions should often be rolled back after an exception occurs. Please refer
to ModuleTransactionAttributes for a description on how to do this automatically.

SafetyFacade pattern

The goal of the safety facade is that it handles all the abnormal situations, such
that for a user of a component, the business operation either succeeds or
completely fails. The safety facade has made all attempts to fix or retry and has
informed the required parties if necessary. A safety facade takes the responsibility
of treating abnormal situation away from normal business code. This is

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 278 / 320
ELCA Informatique SA, Switzerland, 2009.

particularly interesting as the code can typically not do much against it. The safety
facade wraps a group of component implementations (e.g. via dynamic proxies)
and provides a "better" quality of service (i.e. either the components work or they
fail completely) for the users of the component implementations.

The following picture illustrates this. Four groups of components ("risk
communities") are each assembled with their safety facade. The safety facade
treats all abnormal situations. The numbers indicate a sample use of a safety
facade: KU3 calls KW3 and KW3 calls KX3. KX3 indicates an abnormal situation
(throws an unchecked exception). The safety facade SW therefore reconfigures
the system such that KW3 retries once again with the component KY3.

The module ModuleExceptionHandling implements a safety facade. This idea is
described in "Moderne Software Architekturen", §5.4 .

Correlation ID

A correlation id is a String value (usually a UUID) that is used to correlate (= link
together) exceptions and log-entries that concern the same HTTP request or
processing. The correlation ID is generated at the entry of a HTTP request and
stored in a ThreadLocal? variable. When an exception is printed out or a log is
written out, this correlation id is added to the message. On the level of log4j this is

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 279 / 320
ELCA Informatique SA, Switzerland, 2009.

done via a special PatternLayout? string that includes %X{correlationId} (see
below for a full example).

Running example : The CorrelationIdManager interface and an example

implementation CorrelationIdManagerSlf4jImpl are contained in module-core .
They are used by a CorrelationIdFilter in the internal jsf-demo which assures
the creation of a fresh correlation id for each request sent to the server. There is
also a CorrelationIdImplicitContextPasser in module-core , which is used in the
sample configuration scenarios/remoting/common/protocols-config.xml of the
swing-demo-common project. The ImplicitContextPasser allows to trace a request
over process-borders.

2010-11-19 09:07:51,731 ERROR [org.jboss.seam.excep tion.Exceptions]

[[230516046]] handled and logged exception

javax.servlet.ServletException: #{entityManager.sav eOrUpdate(employee)}:

org.springframework.dao.DataIntegrityViolationExcep tion: not-null property

The correlation id 230516046 is then also displayed on a error page in JSF.

Internally we use the MDC mechanism of slf4j and log4j configuration like the
following:

 <appender name="business-file-appender"

class="org.apache.log4j.DailyRollingFileAppender">

 <param name="File" value="logs/business.log " />

 <layout class="org.apache.log4j.PatternLayo ut">

 <param name="ConversionPattern" value=" %d{ISO8601} %-5p [%t]

[%c:%L]: %X{correlationId} %m%n" />

 </layout>

 </appender>

Antipatterns

Exceptions are considered to be an important tool of modern programming
languages, but they become a nuisance for programmers. We list some of the
typical problems (antipatterns) encountered in projects ranging from 1 to more
than 100 man-years:

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 280 / 320
ELCA Informatique SA, Switzerland, 2009.

• There are a large number of different exceptions classes. It is neither clear
when exceptions should be thrown nor how they should be handled.

• A huge number of exception classes create undesired dependencies
between the caller and the callee.

• The code gets messy because of nested try-catch blocks.

• Many catch blocks are either empty, contain little value-adding code (output

to the console, useless mappings of one exception class into another) or –
at best – some logging, but no true exception handling.

• Exceptions are misused to return ordinary values.

Please keep these antipatterns in mind! They are mostly avoided if you use the
previous rules and common sense.

References
• LEAF 2 exception handling guidelines:

http://leaffy.elca.ch/leaf/Documentation_Mirror/guidelines/LEAFExceptionH
andlingGuidelines.doc

o The usage of exceptions has changed in the EL4J. Chapter 2
remains valid.

• Errors and Exceptions – Rights and Responsibilities, Johannes
Siedersleben, ECCOP 2003, paper:
http://www.sdm.de/web4archiv/objects/download/pdf/vonline_siedersleben
_ecoop03.pdf, slides:
http://homepages.cs.ncl.ac.uk/alexander.romanovsky/home.formal/Johann
es-talk.pdf

• Moderne Software Architekturen, Siedersleben, 2004, Chapter 5 (in
German)

• Rules for Developing Robust Programs with Java, Article about exception

handling in Java http://www.idi.ntnu.no/grupper/su/fordypningsprosjekt-
2003/fordypning2003-Nguyen-og-Sveen.pdf

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 281 / 320
ELCA Informatique SA, Switzerland, 2009.

o Easy to read, many interesting patterns about exception handling.

• EL4J HighLevelExceptionHandlingGuidelines

• The trouble with checked exceptions, discussion with Bruce Eckel and

Anders Hejlsberg: do we need to reconsider our choices? TBD
http://www.artima.com/intv/handcuffs.html

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 282 / 320
ELCA Informatique SA, Switzerland, 2009.

Maven plugins
The standard maven documentation of the EL4J plugins can be found under
http://el4j.sourceforge.net/plugins/index.html. This section contains some
additional documentation.

Database plugin
The Database plugin can be used to automate the starting up of a database,
creating and droping tables as well as adding and deleting data. The database
initialization is typically done via configuration files from the classpath. This allows
that each maven project adds its own database initialization. The plugin helps to
ensure that this initialization information is applied in the correct order.

Overview

This plugin applies all SQL scripts of your project and all projects it depends on.
The scripts are applied in correct order (root module -> leaf module for creation,
leaf module -> root module for destruction).

Here is a sample module set up that helps to illustrate a typical usage:

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 283 / 320
ELCA Informatique SA, Switzerland, 2009.

Create SQL scripts of the modules would be execute in the order module core,
jmx, webTools, security, newApplication (the order of the modules jmx, webTools,
security may be interchanged, as they are on the same level). SQL scripts inside
a module get sorted alphabetically (since EL4J version 1.6.1). Destroy scripts are
executed in the inverse order.

The idea that each project should be able to define its own SQL scripts to init and
clear the database is part of the module abstraction of EL4J.

The goals of this plugin can be either run via the console or during automated
builds (during tests). During most goal, the plugin executes sql scripts whose

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 284 / 320
ELCA Informatique SA, Switzerland, 2009.

names have particular prefixes: the create goal executes files that start with
create , the update goal executes files that have an update prefix.

Goals

Goal start
This goal can run in two modes:

1. Start the configured database server (the db.name maven property) through
the console command mvn db:start . It only launches Derby (when other
databases are set, the command does nothing). This can be run on an
arbitrary project and does in general not require configuration information. If
run outside of EL4J, and if Derby is enabled (default), it requires the
toolsPath property. This goal blocks by default the maven execution until
the user hits Ctrl-C (this can be changed by setting db.wait to false).

2. The second mode is to integrate the goal into the build life cycle of a

project. This requires the wait property to be set to false , because the goal
would block the execution otherwise.

Goal create
This goal creates tables in the database. It takes the sqlSourceDir property,
replaces {db.name} with the actual database name (specified via profile), resolves
the given class paths to filesystem paths and looks in these directories for .sql
files of the format create*.sql , where * denotes an arbitrary character sequence.
(CAVEAT: sqlSourceDir is evaluated in the classpath, not in the normal file
system path!) It then takes these .sql files, extracts all semi-colon separated SQL
statements of them and executes these statements, starting with the statements
of the SQL files of the highest dependencies (e.g. if A depends on B and B
depends on C, it would execute C's statements first, then B's and finally A's).
Moreover, it uses the JDBC driver from driverPropertiesSource and the
connection properties from connectionPropertiesSource to establish a database
connection.

Goal update
This goal works like the create goal, but executes statements from sql files
starting with update .

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 285 / 320
ELCA Informatique SA, Switzerland, 2009.

Goal delete
Taking the same properties like create and update , this goal deletes data in the
tables. Note that it executes the SQL statements in reversed (!) order. Taking the
example from the create goal this would mean that it starts with A's statement,
then process B's and finally C's. This order ensures that SQL constraints are not
violated.

Goal drop
The drop goal works like the delete goal instead that it drops tables. Note that
compared to silentDrop it throws an exception in case it encounters an error.

Goal silentDrop
The silentDrop goal works just like the drop goal, but doesn't throw an exception
in case of an error.

You would use silentDrop in the pre-integration-phase to ensure that all tables
are dropped prior of executing the create goal and drop in the post-integration-

phase to clean up after your tests and when you actually want to get exceptions.

Goal stop
This goal stops the Derby Network Server. This can be used when integrating the
plugin to the build lifecycle. If not used, java will clean up and stop the Derby
Network Server when the execution of maven ends.

Goal block
Convenience goal to block until one hits Ctrl-C. Is unconditional (blocks also with
a db.wait flag set to false). This goal is typically useful on the command line.

Goal prepare
This goal is a convenience goal for executing start , silentDrop and create in
sequence. It simplifies the typical code in the pom.xml file to the following:

 <plugin>

 <groupId>ch.elca.el4j.plugins</groupId>

 <artifactId>maven-database-plugin</artifactId >

 <executions>

 <execution>

 <goals>

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 286 / 320
ELCA Informatique SA, Switzerland, 2009.

 <goal>prepare</goal>

 </goals>

 <phase>pre-integration-test</phase>

 </execution>

 </executions>

 </plugin>

Goal cleanUp
This goal is a convenience goal for executing drop and stop in sequence. It
simplifies the typical code in the pom.xml file to the following:

 <plugin>

 <groupId>ch.elca.el4j.plugins</groupId>

 <artifactId>maven-database-plugin</artifactId >

 <executions>

 <execution>

 <configuration>

 <goals>

 <goal>cleanUp</goal>

 </goals>

 <phase>post-integration-test</phase>

 </execution>

 </executions>

 </plugin>

Goal destroy
The destroy goal launches the sql files with a destroy prefix.

Goal run
The run goal launches the sql files starting with a specified prefix. Example: mvn

db:run -DfilePrefix="archive" executes all sql files starting with "archive".

There are two arguments:

• filePrefix : the file prefix

• reverse : should sql scripts be executed in reverse order. false : bottom up
(in dependency tree), like create goal; true : top down, like drop goal

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 287 / 320
ELCA Informatique SA, Switzerland, 2009.

Two examples:

• mvn db:run -DfilePrefix="create" -Dreverse="false" is equal to mvn

db:create

• mvn db:run -DfilePrefix="drop" -Dreverse="true" is equal to mvn db:drop

Properties
• db.wait : Specifies whether the start goal should be blocking or not (default

value: true).

• db.connectionPropertiesSource : Path to a property file where connection
properties (username, password and url) are set. Sample content:

dataSource.url=jdbc:derby:net://localhost:1527/"ref db;create=true;":retriev

eMessagesFromServerOnGetMessage=true;

dataSource.username=refdb_user

dataSource.password=**********

If you don't provide a value for this parameter, a .properties file is selected
automatically. If there is a file env-placeholder.properties (see module-env) in
the root of the classpath and it contains the needed database properties, they will
be taken. Otherwise the following naming pattern will be applied: artifactId-

override-{db.name}.properties in directory scenarios/db/raw/ , where artifactId is
replaced by current ArtifactId. The base directory may be changed using the
parameter connectionPropertiesDir (see below). The naming pattern can be
changed, too (see db.connectionPropertiesSourceTemplate). If there is no
.properties file for the current artifact, all the artifacts in the dependency tree are
checked (from the leaf module towards the root module), until a .properties file is
found.

• db.connectionPropertiesSourceTemplate : Template for file names for
.properties files used to read the db connection settings. You can use the
variables {groupId}, {artifactId}, {version} and {db.name}. E.g.
{artifactId}-override-{db.name}.properties (this is the default-value)

• db.connectionPropertiesDir : Directory where to look for .properties files for
DB-connection (default value: scenarios/db/raw/).

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 288 / 320
ELCA Informatique SA, Switzerland, 2009.

• db.driverPropertiesSource : Path to property file that contains the JDBC

driver name (default value: scenarios/db/raw/common-database-override-

{db.name}.properties (contained in the EL4J database module, so it should
"just work")). Sample content:

dataSource.driverClassName=org.apache.derby.jdbc.Cl ientDriver

dataSource.validationQuery=VALUES CURRENT TIMESTAMP

• db.sqlSourceDir : SQL source directories, i.e. the directories where to find
the .sql files (default value: /etc/sql/general/, /etc/sql/{db.name}/). The
source directories are separated with the separator separator .

• separator : Separator for string lists (default value: ",").

• delimiter : Separator for sql statements. (default value: ";").

Example usage

Console
cd newApplication; mvn db:prepare db:block

Launch and re-init db (of current project), block until Ctrl-C:
mvn db:silentDrop db:create

The same without db launch
mvn db:start

Start the Derby Network Server in blocking mode.

Please refer also to the MavenCheatSheet for more examples.

Integrating plugin into build lifecycle

Add the following snippets to the section in the part of the pom.xml file of your
project (this is already done for you in the application templates):

• Add the db initialization in the pre-integration-test phase. Actually it is

shorter to just use the prepare goal (see the example under the prepare
goal documentation above):

 <plugin>

 <groupId>ch.elca.el4j.plugins</groupId>

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 289 / 320
ELCA Informatique SA, Switzerland, 2009.

 <artifactId>maven-database-plugin</artifactId >

 <executions>

 <execution>

 <configuration>

 <wait>false</wait>

 </configuration>

 <goals>

 <goal>start</goal>

 <goal>silentDrop</goal>

 <goal>create</goal>

 </goals>

 <phase>pre-integration-test</phase>

 </execution>

 </executions>

 </plugin>

• integration-test phase: We shift the tests from the test to the

integration-test phase, where we can specify plugins to be executed
before and after the integration-test phase.

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-surefire-plugin</artifac tId>

 <configuration>

 <skip>true</skip>

 </configuration>

 <executions>

 <execution>

 <id>surefire-it</id>

 <phase>integration-test</phase >

 <goals>

 <goal>test</goal>

 </goals>

 <configuration>

 <skip>false</skip>

 </configuration>

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 290 / 320
ELCA Informatique SA, Switzerland, 2009.

 </execution>

 </executions>

 </plugin>

• In the post-integration-test phase we just launch the cleanUp goal (refer
to cleanUp goal documentation).

Remarks:

• Note that you don't need the db. prefix for the properties.

• You can use {db.name} in the connectionPropertiesSource as well as the
driverPropertiesSource to keep the configuration generic.

• You can specify more than one SQL source directory by using the
separator (see the separator property).

• All the resources are taken from the classpath, which includes the project
as well as all dependencies.

• prepare and cleanUp were called prepareDB and cleanUpDB before.

• Note that we added the goal siltenDrop before create to be sure that the
the tables do not exist when we try to create them.

• SilentDrop is the only goal that won't fail if it encounters an exception.

Dependencies to external jars
The plugin requires Spring for path matching and Derby for starting the Derby
Network Server.

References
• Plugin documentation: http://el4j.sourceforge.net/plugins/maven-database-

plugin/plugin-info.html

• Another SQL plugin http://mojo.codehaus.org/sql-maven-plugin/

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 291 / 320
ELCA Informatique SA, Switzerland, 2009.

DepGraph plugin
The DepGraph plugin can be used to draw a dependency graph from the project,
the mojo is executed in. It traverses all dependencies and creates a graph using
Graphviz.

External prerequisites
Apart from maven and the plugin itself one has to make sure that Graphviz (see
below) is installed and its executables - in particular dot - are in the PATH
environment variable.

Description
There are two maven goals: depgraph and fullgraph to get a dependency graph
just for your project or a graph for all the modules as they are interconnected.
Please refer to the next two section for more info on how to use them.

In the full graph, the same logical artefact can exist multiple times (e.g. in different
versions). When calculating the classpath for a project, maven will eliminate the
unneeded artefact (typically the one with the older version id). Please refer to
maven doc for more details. We have also used this plugin to detect duplicate jars
in a big project.

Handling of child->parent dependencies: To make the graph output more

readable, parent->child dependencies are not considered as dependencies in
case no other dependencies exist. This typically leads to "orphan" artifacts that
seem to be not connected to the rest of the artifacts. You can use the
depgraph.filterEmptyArtifacts property in case you want to eliminate them from
the graph.

The depgraph-plugin has been revised. It now shows exactly the same order of
the dependencies as they are added to the classpath by maven, e.g. if two
dependencies point to the same artifact but with different version, the newer one
wins (is put to the classpath). If the versions are the same, the one that is nearer
to the root artifact wins. If you want detect duplicated artifacts, set the
depgraph.drawOmitted property to true. This draws omitted artifacts in dotted
boxes.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 292 / 320
ELCA Informatique SA, Switzerland, 2009.

Goal depgraph
Creates the graph to the local project.

Properties

• depgraph.outFile : The file to write to. Default is name of the project.png in
the current directory. Using another extension than png, one can change
the format the output is in

• depgraph.outDir : The directory the output files are written to. If no outDir is
given, the path is relative to the working directory

• depgraph.artifactFilter : Only include artifacts that contain the given
pattern. Java regexp is used, so any possible regexp can be used

• depgraph.groupFilter : Like artifactFilter , but filters group

• depgraph.versionFilter : Like versionFilter , but filters version

• depgraph.dotFile : The file to write the dot file to. By default, no dot file is
written.

• depgraph.filterEmptyArtifacts : Delete all artifacts that none depends on
and that depend on none. By default these artifacts are shown.

• depgraph.drawScope : (default=true) Defines whether the edges should be
labeled with dependency-scope (from the perspective of the root artifact).

• depgraph.drawOmitted : (default=false) Defines whether omitted artifacts
should be drawn in dotted boxes.

Goal fullgraph
Creates a graph of all projects that are in reachable modules from the current
project.

Properties
The same properties as for the depgraph goal are available.

Links
• Graphviz Homepage

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 293 / 320
ELCA Informatique SA, Switzerland, 2009.

• The Java tutorials: Regex

• Introduction to the Dependency Mechanism

Advanced usage
As soon as the graph gets bigger it gets more and more difficult to find artifacts.
For this use case the following can help:

 mvn depgraph:fullgraph -Ddepgraph.ext=svg

The graph can be viewed and searched using
http://zvtm.sourceforge.net/zgrviewer.html. Download and unzip it and put the
installation path in run.bat otherwise it will not work properly. Open the generated
svg file with File -> Open -> Open SVG generated by GraphViz... and use Ctrl-F to
search for a string.

Open Issues
• Dependency of war-packaged artifacts are not resolved (unless the mojo is

invoked on them explicitly).

o To solve this issue, take a look at the eclipse plugin, this maybe has
the same issue

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 294 / 320
ELCA Informatique SA, Switzerland, 2009.

Examples

Command line

 mvn depgraph:fullgraph -Ddepgraph.groupFilter="c h.elca"

 mvn depgraph:fullgraph -

Ddepgraph.groupFilter="(ch.elca.el4j.modules)|(ch.e lca.el4j.demos)|(ch.elca

.el4j.apps)"

 -Ddepgraph.filterEmptyArtifacts=true -Ddepgraph .dotFile=el4j.dot

Sample Output graphs

Small output graph

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 295 / 320
ELCA Informatique SA, Switzerland, 2009.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 296 / 320
ELCA Informatique SA, Switzerland, 2009.

All modules, different view

Medium graph

All modules, test modules and samples of EL4J:

Big graph

Please refer also to the MavenCheatSheet for more examples

-- ClaudeHumard - 14 Jan 2008

Version plugin

A plugin to keep track of used dependencies for a given project. It is intended to
get a hint which referenced artifacts could be updated to a new version.

Goals

Goal list

List all dependencies, plugins, managed dependencies and managed plugins and
list all atifacts that are not up-to-date, showing the newer available versions.

Properties

• -Dversion.listall={true|false} List all artifacts, including those that are
up-to-date (optional, defaults to false)

Goal overview

Go through all projects in the reactor and list the dependencies and and plugins.
Managed plugins and dependencies are not listed as they are inherited and
therefore appear typically through the whole reactor.

Properties

• The same properties as for the goal list are available

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 297 / 320
ELCA Informatique SA, Switzerland, 2009.

Goal version

List available versions for a given artifact. This goal uses the remote repositories
of the project in the current directory, so results may differ if executed at different
places.

Properties

• artifactid The ID of the artifact to be searched

• groupid The ID of the group of the artifact to be searched

• scope The scope the artifact has to be in (optional, defaults to runtime)

• type The type of the searched artifact (optional, defaults to jar)

Known Issues

• When searching for old plugins some plugins, some do not appear as
plugins but only in the pluginManagement (It's assumed the ones missing
are not explicitly listed in the pom, but called as they're bound to a lifecycle
phase. E.g. maven-war-plugin)

• When executing the plugin only those plugins and dependencies are
considered that belong to an active profile

Example Output

version:list

$ mvn version:list -N

...

[INFO] [version:list]

[INFO] Artifact ID: maven-javadoc-plugin

[INFO] Group ID: org.apache.maven.plugins

[INFO] Version: 2.1-20061003.094811-3

[INFO] Newer Versions:

[INFO] 2.2

[INFO] Occurences in:

[INFO] "EL4J" as PluginManagement

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 298 / 320
ELCA Informatique SA, Switzerland, 2009.

[INFO]

[INFO] Artifact ID: junit

[INFO] Group ID: junit

[INFO] Version: 3.8.2

[INFO] Newer Versions:

[INFO] 4.0

[INFO] 4.1

[INFO] 4.2

[INFO] Occurences in:

[INFO] "EL4J" as DependecyManagement

[INFO]

[INFO] Artifact ID: maven-war-plugin

[INFO] Group ID: org.apache.maven.plugins

[INFO] Version: 2.0.2-20060907.100703-1

[INFO] Newer Versions:

[INFO] 2.0.2

[INFO] Occurences in:

[INFO] "EL4J" as PluginManagement

version:overview

$ mvn version:overview

...

[INFO] task-segment: [version:overview] (aggrega tor-style)

...

[INFO] Artifact ID: jamon

[INFO] Group ID: com.jamonapi

[INFO] Version: 1.0

[INFO] Newer Versions:

[INFO] 2.0

[INFO] Occurences in:

[INFO] "EL4J module light statistics commo n" as Dependency

[INFO]

[INFO] Artifact ID: acegi-security

[INFO] Group ID: org.acegisecurity

[INFO] Version: 1.0.1

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 299 / 320
ELCA Informatique SA, Switzerland, 2009.

[INFO] Newer Versions:

[INFO] 1.0.2

[INFO] Occurences in:

[INFO] "EL4J module security" as Dependenc y

[INFO]

[INFO] Artifact ID: jaxrpc

[INFO] Group ID: javax.xml

[INFO] Version: 1.1

[INFO] Newer Versions:

[INFO] 2.0

[INFO] Occurences in:

[INFO] "EL4J module remoting soap" as Depe ndency

[INFO]

[INFO] Artifact ID: plexus-utils

[INFO] Group ID: org.codehaus.plexus

[INFO] Version: 1.2

[INFO] Newer Versions:

[INFO] 1.3-SNAPSHOT

[INFO] Occurences in:

[INFO] "EL4J plugin helper for maven repos itories" as Dependency

[INFO] "EL4J plugin decorator for manifest files" as Dependency

[INFO] "EL4J plugin collector for files" a s Dependency

[INFO]

[INFO] Artifact ID: exec-maven-plugin

[INFO] Group ID: org.codehaus.mojo

[INFO] Version: 1.0.1

[INFO] Newer Versions:

[INFO] 1.0.2

[INFO] Occurences in:

[INFO] "EL4J website" as Plugin

version:version

$ mvn version:version -Dversion.artifactid="spring" -

Dversion.groupid="org.springframework" -N

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 300 / 320
ELCA Informatique SA, Switzerland, 2009.

...

[INFO] [version:version]

[INFO] Using the currenct projects "EL4J" repositor ies.

[INFO] Used repositories:

[INFO] el4jReleaseRepositoryExternalhttp://el4.elc a-

services.ch/el4j/maven2repository

[INFO] el4jSnapshotRepositoryExternalhttp://el4.el ca-

services.ch/el4j/maven2snapshots

[INFO]

el4jReleaseRepositoryInternalhttp://leaffy.elca.ch/ java/maven2repository

[INFO] centralhttp://repo1.maven.org/maven2

[INFO] Artifact ID: spring

[INFO] Group ID: org.springframework

[INFO] Scope: runtime

[INFO] Type: jar

[INFO] 1.0-m4

[INFO] 1.0-rc1

[INFO] 1.0

[INFO] 1.1-rc1

[INFO] 1.1-rc2

[INFO] 1.1

[INFO] 1.1.1

[INFO] 1.1.2

[INFO] 1.1.3

[INFO] 1.1.4

[INFO] 1.1.5

[INFO] 1.2-rc1

[INFO] 1.2-rc2

[INFO] 1.2

[INFO] 1.2.1

[INFO] 1.2.2

[INFO] 1.2.3

[INFO] 1.2.4

[INFO] 1.2.5

[INFO] 1.2.6

[INFO] 1.2.7

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 301 / 320
ELCA Informatique SA, Switzerland, 2009.

[INFO] 1.2.8

[INFO] 2.0-m2

[INFO] 2.0-m4

[INFO] 2.0-rc4-snapshot-patched-el4j-20060830

[INFO] 2.0-rc4-snapshot-patched-el4j-20060831

[INFO] 2.0-rc4

[INFO] 2.0

[INFO] 2.0.2

Environment plugin

Here is the documentation of the EL4J env plugin:
http://el4j.sourceforge.net/plugins/maven-env-support-plugin/index.html

Why is this plugin required? We put here the mail argumentation of MZE (in a
rather raw form).

Question 1
> J'ai une petite question sur maven-env-plugin. > > Quel est le but exact de ce
plugin, et pourquoi ne pas > utiliser les fonctions de filtrage supportées par maven
?

Answer 1

This plugin was made due to the following reasons:

• The file that would be need to be filtered can be placed in the normal

resource directory. If you just use the Maven filtering you must enable
filtering for the complete resource directory but this can cause unmeant
replacements. The filtered placeholders are under control (Maven have a
lot of properties that would be used for filtering).

• The environment can be changed in one file without building the hole
project (i.e. easily adapt delivered WAR/EAR at costumer side).

• You can easily get information about the used environment on runtime (see
ch.elca.el4j.util.env.EnvPropertiesUtils).

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 302 / 320
ELCA Informatique SA, Switzerland, 2009.

Question 2

For the first point, using maven you can define as many resource folder as you
want determining for each folder you want to enable filtering or not.

I don't understand the second point. Since resource are usually bundled with
war/ear… You generally have to make rebuild… Unless you're using JNDI
customisation, or you can customize the classpath to force the server to load
preferably a property files outside of the war… Or can you do it in another way?

Answer 2
1. It's correct that you can define multiple resource folders, but you have to

specially move the resources into this folder (further loose history in CVS) if
they suddenly need to be filtered. That's ugly.

2. Clear you can rebuild but if you have already multiple environments
prepared you can save time. The general point is not to loose the
placeholders by replacing them in the resource files with their values.

MavenRec plugin

Introduction

The MavenRecPlugin is used to execute one or more maven commands (e.g.
clean compile) for a specific project and recursively for all local dependencies of
this project. A dependency is local when it can be found in the same directory
structure as the current project.

This is particularly useful if you work on the EL4J framework and you have
checked out the whole "external" directory containing a lot of submodules. Now, if
you make changes in 2 dependent modules (e.g. A depending on B), you need to
rebuild the module the other depends on first (i.e. B) before you compile the
second module (i.e. A). Normally, you would do this by changing to the respective
directories and execute a mvn clean compile in each of them. Another (even
worse) alternative would be to execute mvn clean compile in the external-folder
and getting the whole EL4J framework compiled (including even unchanged
modules), which is a slow task.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 303 / 320
ELCA Informatique SA, Switzerland, 2009.

With the MavenRecPlugin, you just type the maven command(s) in the folder of
the current project replacing mvn by mvnrec . The MavenRecPlugin (1) finds the root
folder of the current project folder and from there, it (2) scans all sub-directories in
the directory-tree which contain a pom.xml (i.e. "src" or "target" folders are
ignored). The MavenRecPlugin then (3) executes the maven command(s) only for
those projects which are a dependency of the current project.

Requirements

To ease the use of MavenRecPlugin, there are two scripts in the maven/bin
folder: mvnrec for linux/cygwin and mvnrec.bat for the windows shell.

Usage

Just type mvnrec (cygwin/linux) or mvnrec.bat (windows-console) to get help on
the usage.

The syntax is:

mvnrec [OPTIONS] MAVEN_COMMAND [MAVEN_COMMAND]...

Example:

mvnrec -b -ff clean install

In the windows shell, you have to type mvnrec.bat instead of mvnrec. The rest of
the syntax and all options are exactly the same.

Options

The following options are available:

• -b force scanning of folders and creation of bootstrap-file (see next section)

• -ff fail-fast: Stop at first failure

• -fae fail-at-end: Only fail the build afterwards; continue execution in all non-
impacted projects (default)

• -v verbose: produce mvnrec debug output

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 304 / 320
ELCA Informatique SA, Switzerland, 2009.

Bootstraping

As described above, in the first phase the MavenRecPlugin searches the folder of
the root-project of the current project (e.g. the external folder in the el4j-
framework). There, it looks out for a mvn_rec_bootstrap.xml file located in the
target folder. If this file exists, MavenRecPlugin skips the directory scanning
phase and uses the information stored in this file to locate the dependencies.
Otherwise, MavenRecPlugin scans the directories as described above and stores
the collected information about the visited projects (e.g. groupId, artifactId, pom-
location etc.) in the mentioned mvn_rec_bootstrap.xml file. As the project
dependencies don't change very often, this mechanism helps to reduce the
execution time of MavenRecPlugin as the directory scanning phase may take
while. On the other hand, if there are changes in the directory structure or if you
add or remove a dependency in your project, you have to enforce
MavenRecPlugin to rescan the directories and to overwrite the old
mvn_rec_bootstrap.xml . This can be done by adding the -b parameter to the
mvnrec command, e.g. mvnrec -b clean compile .

Example

Let's assume you have the following directory and project structure:

• modules/

o pom.xml

o core/

� pom.xml

o hibernate/

� pom.xml

o remoting_core/

� pom.xml

o remoting_jaxws/

� pom.xml

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 305 / 320
ELCA Informatique SA, Switzerland, 2009.

If you are currently working on the module "Remoting Jaxws" and made also
some changes in the module "Core" it requires. Now, you can change to the
directory /modules/remoting_jaxws and type in there mvnrec clean install .
MavenRecPlugin scans the directories, finds all other modules and executes the
command only in the dependent projects "Module Core" and "Module Remoting
Core" before it is executed in module "Remoting Jaxws". The project "Hibernate"
is ignored because it's not a dependency of module "Remoting Jaxws".
MavenRecPlugin considers only projects with the packaging-types jar and war .

Spring IDE and maven-spring-ide-plugin

Spring IDE is an eclipse plugin that allows you to view graphs of your spring
beans and their dependencies.

Important Note: This plugin needs at least version 2.2.1 of the SpringIDE? to work
correctly.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 306 / 320
ELCA Informatique SA, Switzerland, 2009.

Viewing a set of beans files in Spring IDE (general
method)

• Right-click your project and select "Spring/Add spring project nature". Open
the project properties and select Spring/Beans Support.

• On the config files tab, you can import a set of xml files containing beans.
Import all your project's bean files here. On the config sets tab, make a new
config set and add all the files you imported to this config set.

• Select Window/Show View/Other, then Spring/Spring Explorer. In the
spring explorer, you see all your beans files and your config set.

• To view the beans of one file, right-click it and choose open graph. To view

all beans in one graph, right-click the config set you created above and
open graph there.

• You can right-click an element in the graph to open either the bean
definition or the corresponding .java file.

What the maven beans plugin does:
• The plugin searches your source files or web.xml file for inclusive and

exclusive bean locations as you would present them to a
ModuleApplicationContext.

• Based on the found locations it creates the .springBeans file needed by
SpringIDE

• It forces Spring Nature for the project in eclipse (by modification of the
.project file)

What you get
• After execution the project has an entry in the Spring Explorer containing

all defined beans.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 307 / 320
ELCA Informatique SA, Switzerland, 2009.

Usage

For normal apps

To use it, add the following to your pom.xml:

 <plugin>

 <groupId>ch.elca.el4j.maven.plugins</gro upId>

 <artifactId>maven-spring-ide-plugin</art ifactId>

 <executions>

 <execution>

 <phase>verify</phase>

 <goals>

 <goal>spring-ide</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

If you don't specify a sourceFile, the plugin will go through all java files in the
source directory and search for one that contains the following comment:

// $$ BEANS INCLUDE $$

In the source file, you must use the following schema:

// $$ BEANS INCLUDE $$

String[] included = {

 "classpath*:mandatory/*.xml",

 "classpath:demo/demo*.xml"

};

// $$ BEANS EXCLUDE $$

String[] excluded = {

 "classpath*:exclude-*.xml"

};

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 308 / 320
ELCA Informatique SA, Switzerland, 2009.

For web apps:

To use it, add the following to your pom.xml:

 <plugin>

 <groupId>ch.elca.el4j.maven.plugins</gro upId>

 <artifactId>maven-spring-ide-plugin</art ifactId>

 <executions>

 <execution>

 <phase>verify</phase>

 <goals>

 <goal>spring-ide</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

The plugin will automatically take the web.xml file in the WEB-INF directory. Add
folling comment right before defining the module application context in web.xml

<!-- $$ BEANS INCLUDE $$ -->

Example:

<param-value>

<!-- $$ BEANS INCLUDE $$ -->

 classpath*:mandatory/*.xml,

 classpath*:mandatory/refdb/*.xml,

 classpath*:scenarios/db/raw/*.xml

</param-value>

Important notes
• The $$ comments must appear in the correct order and be typed exactly as

shown.

• Any " " - quoted strings in between are assumed to be bean file entries (for
.java files).

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 309 / 320
ELCA Informatique SA, Switzerland, 2009.

• Only one string at most per line.

• The name of the variables is not important, excluded is optional. The
included/excluded String[] arrays are just the format that a
ModuleApplicationContext can use.

• The included lines end as soon as a } (java) or a closing tag (xml) is read.

• If exclusive lines are present, they are preceded with // $$ BEANS EXCLUDE

$$, the rest is the same for them.

• Commented lines (using // in front or /*...*/ around one or multiple lines) are
not read

Cobertura runtime plugin

Introduction

Cobertura (http://cobertura.sourceforge.net/) is used to create code coverage
reports. The normal Cobertura Maven plugin is used for encapsulated tests, so
just unit test are used to check the code coverage. The idea of this plugin is to
build and deploy the application nearly as normal with Maven and let Cobertura
measure the coverage while working on the application.

What does the plugin do?

The application instruments the class files and collects the java source files.
Instrumenting means modifying the ".class" files plus creating a special file
(cobertura data file) where all lines of the (source) code are summarized. This is
used as base for the report. Cobertura needs to know where its cobertura data file
is stored. The solution is to share the configuration of Maven with the application,
so we have to put the following properties-file cobertura.properties in the "env"
directory of a module of the application (see
http://el4j.sourceforge.net/plugins/maven-env-support-plugin/index.html).

While the application is running, there is a JMX server running too. Just connect
to it you can generate a report via the MBean "coberturaRuntimeController". You
can also pause the coverage-reporting.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 310 / 320
ELCA Informatique SA, Switzerland, 2009.

Configuration properties, pom properties
• cobertura-runtime.dataDirectory

o The directory where all needed files will be created/copied. Default:
${el4j.project.home}/cobertura-runtime (property
el4j.project.home is set in your settings.xml)

• cobertura-runtime.dataFilename

o The name of the Cobertura data file. The file is placed in the data
directory. Default: el4j-cobertura.ser

• cobertura-runtime.sourceCollectorDirectoryName

o The directory name of the directory where the source code of

instrumented classes will be copied. The directory is placed in the
data directory. Default: java-sources

• cobertura-runtime.keepReports

o Flag to mark if a newly generated report should be placed in a new
directory (name with timestamp) or always the same directory should
be used. Default: false

• cobertura-runtime.jmxRmiRegistryPort

o The port where the RMI registry used for the JMX service should be
installed. Default: 8199

• cobertura-runtime.jmxServiceHost

o The host name where the application, actually the JMX service is
running. Default: localhost

All these properties and more are in cobertura.properties, which means that
the values are fixed after building the application . But you can still change
these values via setting the properties as system p roperties with the same
property name. Take attention: Some values are repe ated in other values
(see "cobertura-runtime" properties on the bottom o f EL4J's ROOT pom)!

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 311 / 320
ELCA Informatique SA, Switzerland, 2009.

How to use

Be sure that you have Maven of EL4J >=1.6 installed!

• Place the cobertura properties file in one of your modules

o Copy cobertura.properties to directory "src/main/env" i.e. of your
service module, or where you already have env properties files.

• Go to your project's home directory and build your application by activating
profile "cobertura-runtime".

o cd YOUR_PROJECT_HOME

o mvn -P+cobertura-runtime clean install
or mvn -DskipTests=true -P-integrationTests,+cobertura -runtime

clean install to skip tests.

� This instruments your code and collects the source files.

� Via plugin configuration parameters "fileListIncludes" and

"fileListExcludes" you can drive the list of files being
instrumented.

� Via plugin configuration parameters "sourceFileListIncludes"
and "sourceFileListExcludes" you can drive the list of source
files being collected.

� Via plugin configuration parameter "includeTestFiles" you can
include test files too.

� Via plugin configuration parameter "ignoredMethods" you can
ignore methods.

� Here a configuration example (BTW these are the default
values, except "ignoredMethods", it is by default empty):

<build>

 <pluginManagement>

 <plugins>

 <plugin>

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 312 / 320
ELCA Informatique SA, Switzerland, 2009.

 <groupId>ch.elca.el4j.maven.plugins </groupId>

 <artifactId>maven-cobertura-runtime -plugin</artifactId>

 <configuration>

 <fileListIncludes>**\/*.class</ fileListIncludes>

 <fileListExcludes>**\/*Test.cla ss</fileListExcludes>

<sourceFileListIncludes>**\/*.java</sourceFileListI ncludes>

<sourceFileListExcludes>**\/*Test.java</sourceFileL istExcludes>

<ignoredMethods>ch.elca.el4j.apps.jsf.security.Auth enticator#login*,ch.elca

.el4j*#create</ignoredMethods>

 <includeTestFiles>false</includ eTestFiles>

 </configuration>

 </plugin>

 </plugins>

 </pluginManagement>

</build>

• You can set all these properties also as Maven prop erties. Here the

example with the values above:

<properties>

 <cobertura-runtime.fileListIncludes>**\/*.class </cobertura-

runtime.fileListIncludes>

 <cobertura-runtime.fileListExcludes>**\/*Test.c lass</cobertura-

runtime.fileListExcludes>

 <cobertura-runtime.sourceFileListIncludes>**\/* .java</cobertura-

runtime.sourceFileListIncludes>

 <cobertura-runtime.sourceFileListExcludes>**\/* Test.java</cobertura-

runtime.sourceFileListExcludes>

 <cobertura-

runtime.ignoredMethods>ch.elca.el4j.apps.jsf.securi ty.Authenticator#login*,

ch.elca.el4j*#create</cobertura-runtime.ignoredMeth ods>

 <cobertura-runtime.includeTestFiles>false</cobe rtura-

runtime.includeTestFiles>

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 313 / 320
ELCA Informatique SA, Switzerland, 2009.

</properties>

• Start your application

o If you start your app via maven ("Simple" Java, Jetty, Cargo

(Tomcat)) do not forget to always add the profile "cobertura-runtime"
like below:

� mvn -P+cobertura-runtime exec:java

� mvn -P+cobertura-runtime jetty:run

� mvn -P+cobertura-runtime cargo:start

� Else you will get a ClassNotFoundException i.e. for
net.sourceforge.cobertura.coveragedata.HasBeenInstr umente

d

• By having config location classpath*:mandatory/*.xml as usual in the

ModuleAppliactionContext , the JMX service is now running beside the
application by default at url
service:jmx:rmi://localhost/jndi/rmi://localhost:81 99/coberturaRuntim

eConnector . Open the JConsole via the "jconsole" goal:

o Change to the directory where you launched your application.

o mvn -P+cobertura-runtime cobertura-runtime:jconsole

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 314 / 320
ELCA Informatique SA, Switzerland, 2009.

• Cobertura runtime controller @ JConsole:

o flushRecords : Writes the cobertura-coverage-data to the configured

file.

o getDataFilePath : Returns the path to the cobertura-coverage-data

file.

o generateReport : Executes a flush and generates the cobertura

coverage report. The returned path is the directory where the report
has been written to.

o isRecording : Returns true (default case) if cobertura is currently

collecting data.

o stopRecording : Stops cobertura coverage recording.

o startRecording : Starts cobertura coverage recording again.

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 315 / 320
ELCA Informatique SA, Switzerland, 2009.

• If the application has been stopped you can still create the coverage report
with mvn -P+cobertura-runtime cobertura-runtime:report

• To clean all coverage data execute mvn -P+cobertura-runtime cobertura-

runtime:clean
Now you have to start the instrumentation and source file collection of you
files again.

• To permanently activate profile cobertura-runtime add it in your
settings.xml :

 <activeProfiles>

 <!-- DO NOT DELETE THE FOLLOWING LINE! -->

 <activeProfile>el4j.general</activeProfile>

 <!-- Web container -->

 <!--activeProfile>tomcat6x</activeProfile-- >

 <!--activeProfile>weblogic10x</activeProfil e-->

 <!-- Database -->

 <!--activeProfile>db2</activeProfile-->

 <!--activeProfile>oracle</activeProfile-->

 <!-- Cobertura-runtime -->

 <activeProfile>cobertura-runtime</activePro file>

 </activeProfiles>

Links
• Cobertura Runtime integration presentation

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 316 / 320
ELCA Informatique SA, Switzerland, 2009.

Acknowledgments
There are many persons that have contributed to EL4J (in alphabetical order):

• Tobias Ammon

• Christoph Bäni

• David Bernhard

• Frank Bitzer

• Raphael Boog

• Reynald Borer

• Simon Börlin

• Laurent Bovet

• Andi Bur

• Alexander Deiss

• Do Phuong Hoang (PHD)

• Reto Fankhauser

• Christian Gasser

• Adrian Häfeli

• Jacques-Olivier Haenni

• Jonas Hauenstein

• Dominique Hügli

• Claude Humard

• Philippe Jacot

• Florian Keusch

• Vincent Larchet

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 317 / 320
ELCA Informatique SA, Switzerland, 2009.

• Marc Lehmann

• Yves Martin

• Alex Mathey

• Martin Meier

• Adrian Moos

• Philipp Oesch

• Philipp H. Oser

• Markus Pahs

• Andreas Pfenninger

• Stefan Pleisch

• Jean-François Poilpret

• Pham Quoc Ky (QKP)

• Fabian Reichlin

• Andreas Rüedlinger

• Nicola Schiper

• Marc Schmid

• Christoph Schwitter

• David Stefan

• Florian Süss

• Daniel Thomas

• Michael Vorburger

• Rachid Waraich

• Sandra Weber

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 318 / 320
ELCA Informatique SA, Switzerland, 2009.

• Stefan Wismer

• Martin Zeltner

• Dominik Zindel

• Martin Zingg

Thank you!

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 319 / 320
ELCA Informatique SA, Switzerland, 2009.

References
• EL4J Website, http://el4j.sourceforge.net/

• Commercial EL4J Website, http://www.elca.ch/solutions/el4j

• Professional Java Development with the Spring Framework; Rod Johnson,

Juergen Hoeller, Alef Arendsen, Thomas Risberg, Colin Sampaleanu;
wrox; 2005

 Reference Documentation

V 1.0 / 15.12.09 / POS, MZE, SWI, DZI, JHN 320 / 320
ELCA Informatique SA, Switzerland, 2009.

Record of changes

Filename Version Date Description / Author

ReferenceDocumentation 1.7 15.12.09 Initial Version of Documentation for
EL4J 1.7

References

Abbreviations

